File size: 2,192 Bytes
6ac27af
b2e0420
 
6ac27af
b2e0420
d240e67
f70b16e
b2e0420
 
 
 
 
 
 
 
 
 
6ac27af
b2e0420
 
 
 
 
2a40bee
6ac27af
b2e0420
6ac27af
b2e0420
6ac27af
b2e0420
6ac27af
 
b2e0420
6ac27af
 
3e314cb
6ac27af
 
 
b2e0420
6ac27af
 
 
3e314cb
 
 
6ac27af
3e314cb
6ac27af
 
3e314cb
6ac27af
 
cf2f20d
 
 
6ac27af
 
 
 
 
 
 
b2e0420
 
 
6ac27af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
from transformers import DetrImageProcessor, DetrForObjectDetection
import torch
from PIL import Image, ImageDraw
import random

def detect_objects(image):
    processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
    model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")

    inputs = processor(images=image, return_tensors="pt")
    outputs = model(**inputs)

    target_sizes = torch.tensor([image.size[::-1]])
    results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]

    draw = ImageDraw.Draw(image)
    labels = []
    for i, (score, label, box) in enumerate(zip(results["scores"], results["labels"], results["boxes"])):
        box = [round(i, 2) for i in box.tolist()]
        color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
        draw.rectangle(box, outline=color, width=3)
        label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 2)}"
        draw.text((box[0], box[1]), label_text, fill=color,)
        labels.append(label_text)

    return image, labels

def upload_image(file):
    image = Image.open(file.name)
    image_with_boxes, labels = detect_objects(image)
    return image_with_boxes, labels

def show_labels(labels):
    return "\n".join(labels)

# Interface to display the image with bounding boxes
iface_objects = gr.Interface(
    fn=upload_image,
    inputs="file",
    outputs=["image", "text"],
    title="Object Detection",
    description="Upload an image and detect objects using DETR model.",
    allow_flagging=False
)

# Interface to display the detected labels
iface_labels = gr.Interface(
    fn=show_labels,
    inputs="text",
    outputs="text",
    title="Detected Labels",
    description="Displays the labels detected in the uploaded image.",
    allow_flagging=False
)

# Combine interfaces with a tapped interface
interface = gr.Interface(
    [iface_objects, iface_labels],
    inputs="text",
    outputs="text",
    title="Object Detection with Labels",
    description="Upload an image and view detected objects and labels.",
    allow_flagging=False
)

interface.launch()