Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,11 +1,21 @@ | |
| 1 | 
             
            import gradio as gr
         | 
|  | |
| 2 |  | 
| 3 | 
            -
            #  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 4 | 
             
            tts_title = "Text to Speech Translation"
         | 
| 5 | 
             
            tts_examples = [
         | 
| 6 | 
             
                "I love learning machine learning",
         | 
| 7 | 
             
                "How do you do?",
         | 
| 8 | 
             
            ]
         | 
|  | |
| 9 | 
             
            tts_demo = gr.Interface.load(
         | 
| 10 | 
             
                "huggingface/facebook/fastspeech2-en-ljspeech",
         | 
| 11 | 
             
                title=tts_title,
         | 
| @@ -13,21 +23,8 @@ tts_demo = gr.Interface.load( | |
| 13 | 
             
                description="Give me something to say!",
         | 
| 14 | 
             
            )
         | 
| 15 |  | 
| 16 | 
            -
            #  | 
| 17 | 
            -
             | 
| 18 | 
            -
            sentiment_examples = [
         | 
| 19 | 
            -
                "I love learning machine learning",
         | 
| 20 | 
            -
                "How do you do?",
         | 
| 21 | 
            -
            ]
         | 
| 22 | 
            -
            sentiment_demo = gr.Interface.load(
         | 
| 23 | 
            -
                "huggingface/nlp-sentiment-analysis",
         | 
| 24 | 
            -
                title=sentiment_title,
         | 
| 25 | 
            -
                examples=sentiment_examples,
         | 
| 26 | 
            -
                description="Analyze the sentiment of the text!",
         | 
| 27 | 
            -
            )
         | 
| 28 | 
            -
             | 
| 29 | 
            -
            # Tabbed Interface
         | 
| 30 | 
            -
            demo = gr.TabbedInterface([tts_demo, sentiment_demo], ["Text to Speech", "Sentiment Analysis"])
         | 
| 31 |  | 
| 32 | 
             
            if __name__ == "__main__":
         | 
| 33 | 
             
                demo.launch()
         | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
            +
            from transformers import pipeline
         | 
| 3 |  | 
| 4 | 
            +
            # Sentiment Analysis
         | 
| 5 | 
            +
            sentiment = pipeline("sentiment-analysis")
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            def get_sentiment(input_text):
         | 
| 8 | 
            +
                return sentiment(input_text)
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            iface_sentiment = gr.Interface(get_sentiment, inputs="text", outputs="text", title="Sentiment Analysis")
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            # Text to Speech Translation
         | 
| 13 | 
             
            tts_title = "Text to Speech Translation"
         | 
| 14 | 
             
            tts_examples = [
         | 
| 15 | 
             
                "I love learning machine learning",
         | 
| 16 | 
             
                "How do you do?",
         | 
| 17 | 
             
            ]
         | 
| 18 | 
            +
             | 
| 19 | 
             
            tts_demo = gr.Interface.load(
         | 
| 20 | 
             
                "huggingface/facebook/fastspeech2-en-ljspeech",
         | 
| 21 | 
             
                title=tts_title,
         | 
|  | |
| 23 | 
             
                description="Give me something to say!",
         | 
| 24 | 
             
            )
         | 
| 25 |  | 
| 26 | 
            +
            # Launching both interfaces
         | 
| 27 | 
            +
            demo = gr.TabbedInterface([iface_sentiment, tts_demo], ["Sentiment Analysis", "Text to Speech"])
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 28 |  | 
| 29 | 
             
            if __name__ == "__main__":
         | 
| 30 | 
             
                demo.launch()
         | 
