Viraj2307
commited on
Commit
·
4e0cd14
1
Parent(s):
158107d
Added app file
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
|
7 |
+
# Set seed for reproducibility
|
8 |
+
np.random.seed(42)
|
9 |
+
tf.random.set_seed(42)
|
10 |
+
|
11 |
+
# Define the correct class labels mapping
|
12 |
+
class_labels = ['akiec', 'bcc', 'bkl', 'df', 'nv', 'vasc', 'mel']
|
13 |
+
|
14 |
+
# Load the trained model
|
15 |
+
@st.cache_resource
|
16 |
+
def load_model():
|
17 |
+
return tf.keras.models.load_model('final_model.h5')
|
18 |
+
|
19 |
+
model = load_model()
|
20 |
+
|
21 |
+
# Load mean and std from training (you'll need to provide these)
|
22 |
+
@st.cache_resource
|
23 |
+
def load_mean_std():
|
24 |
+
mean = np.load('mean.npy')
|
25 |
+
std = np.load('std.npy')
|
26 |
+
return mean, std
|
27 |
+
|
28 |
+
mean, std = load_mean_std()
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
# Define the image preprocessing function
|
33 |
+
def preprocess_image(image):
|
34 |
+
image = image.resize((28, 28))
|
35 |
+
image = np.asarray(image)
|
36 |
+
image = (image - mean) / std
|
37 |
+
image = np.expand_dims(image, axis=0)
|
38 |
+
return image
|
39 |
+
|
40 |
+
# Streamlit app
|
41 |
+
st.title('Skin Lesion Predictor')
|
42 |
+
|
43 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
44 |
+
|
45 |
+
if uploaded_file is not None:
|
46 |
+
image = Image.open(io.BytesIO(uploaded_file.read())).convert('RGB')
|
47 |
+
st.image(image, caption='Uploaded Image', use_contanier_width=True)
|
48 |
+
|
49 |
+
# Preprocess the image
|
50 |
+
processed_image = preprocess_image(image)
|
51 |
+
|
52 |
+
# Make prediction
|
53 |
+
predictions = model.predict(processed_image)
|
54 |
+
|
55 |
+
# Get predicted class index and name
|
56 |
+
predicted_class_idx = np.argmax(predictions, axis=1)[0]
|
57 |
+
predicted_class = class_labels[predicted_class_idx]
|
58 |
+
confidence = predictions[0][predicted_class_idx]
|
59 |
+
|
60 |
+
# Display results
|
61 |
+
st.write(f"Predicted Class: {predicted_class}")
|
62 |
+
st.write(f"Confidence: {confidence:.2f}")
|
63 |
+
|
64 |
+
# Display bar chart of all predictions
|
65 |
+
st.bar_chart(dict(zip(class_labels, predictions[0])))
|
66 |
+
|
67 |
+
st.write("Note: This is a demo application and should not be used for medical diagnosis. Always consult with a healthcare professional.")
|