Spaces:
Running
Running
File size: 15,491 Bytes
4d5c005 ee5b4a7 4d5c005 d6ff276 4d5c005 d6ff276 4d5c005 e8fa2bc 4d5c005 e8fa2bc 4d5c005 e8fa2bc 4d5c005 e8fa2bc 4d5c005 e8fa2bc 4d5c005 e8fa2bc 4d5c005 e8fa2bc 4d5c005 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
from flask import Flask, render_template, request, jsonify, redirect, url_for, flash, session
from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user, current_user
from flask_wtf.csrf import CSRFProtect
from flask_wtf import FlaskForm
from wtforms import StringField, PasswordField, SubmitField
from wtforms.validators import DataRequired
from werkzeug.security import generate_password_hash, check_password_hash
import arxiv
import requests
import PyPDF2
from io import BytesIO
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from langchain.memory import ConversationBufferMemory
from langchain_community.embeddings import HuggingFaceEmbeddings
import numpy as np
from concurrent.futures import ThreadPoolExecutor, TimeoutError
from functools import lru_cache
import time
import os
from dotenv import load_dotenv
import json
from datetime import datetime
import firebase_admin
from firebase_admin import credentials, auth
# Load environment variables
load_dotenv()
app = Flask(__name__)
app.secret_key = os.getenv('FLASK_SECRET_KEY')
# Initialize CSRF protection
csrf = CSRFProtect()
csrf.init_app(app)
# Initialize Flask-Login
login_manager = LoginManager()
login_manager.init_app(app)
login_manager.login_view = 'login'
# Initialize Groq
groq_api_key = os.getenv('GROQ_API_KEY')
llm = ChatGroq(
temperature=0.3,
groq_api_key=groq_api_key,
model_name="qwen-2.5-32b"
)
# Initialize embeddings with proper cache directory
embeddings_model = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
cache_folder="/code/.cache/huggingface"
)
# Constants
MAX_CHUNKS = 50
MAX_RESPONSE_LENGTH = 6000
CACHE_DURATION = 3600 # 1 hour in seconds
# Form Classes
class LoginForm(FlaskForm):
username = StringField('Username', validators=[DataRequired()])
password = PasswordField('Password', validators=[DataRequired()])
submit = SubmitField('Login')
class RegisterForm(FlaskForm):
username = StringField('Username', validators=[DataRequired()])
password = PasswordField('Password', validators=[DataRequired()])
submit = SubmitField('Register')
# User class for Flask-Login
class User(UserMixin):
def __init__(self, user_id, email):
self.id = user_id
self.email = email
def generate_analysis(chunks):
analysis_prompts = {
'executive_summary': """
## 🧠 Role
You are an AI assistant that explains research papers in a way that makes reading the original paper unnecessary. Your explanations should be **clear, engaging, and easy to understand**, even for someone who is not deeply familiar with the subject.
## 🎯 Goal
Given any research paper, provide a **simple breakdown** covering:
### 1️⃣ What problem does this paper solve?
- Explain the **issue the paper addresses**.
- Why is this problem **important**?
- What **challenges** existed before this research?
### 2️⃣ How does it solve the problem?
- Summarize the **key idea, method, or approach** used in the paper.
- If applicable, break it down into **steps or components**.
- Compare it to **previous solutions** and highlight what makes it better.
### 3️⃣ Why does this matter? (Real-world impact & applications)
- How can this research be **used in practice**?
- What **industries or fields** benefit from it?
- Does it improve **efficiency, accuracy, cost, or scalability**?
### 4️⃣ Explain with a simple analogy (if applicable)
- Use a **real-life example** to explain complex ideas.
- Keep it **relatable** (e.g., compare it to something like cooking, traveling, or streaming music).
### 5️⃣ Key findings & results
- Summarize the **main results** in simple terms.
- If possible, include **numbers, graphs, or comparisons** for clarity.
### 6️⃣ Limitations & Future Work
- Mention any **weaknesses** or areas for improvement.
- What are the **next steps** for research in this area?
### 7️⃣ Final Takeaway (One-liner summary)
- Provide a **quick summary** of the research in a **single sentence**.
---
## 🎨 Tone & Style
✔ **Simple & clear language** – Avoid jargon unless necessary.
✔ **Step-by-step explanations** – Organize information logically.
✔ **Engaging & structured** – Use bullet points, lists, or tables when needed.
✔ **Make it feel like a story** – Guide the reader smoothly from problem to solution.
---
## ⚡ How to Use This Prompt
1️⃣ Enter the **title, abstract, or full text** of any research paper.
2️⃣ AI will generate a **detailed explanation** that makes the paper easy to understand.
3️⃣ Use it for **blog posts, study guides, or an AI-powered research assistant**.
Remember: The output should be properly formatted in markdown while providing comprehensive coverage of the paper's content."""
}
analysis_results = {}
for aspect, prompt in analysis_prompts.items():
try:
# Clean and join the chunks
context = "\n\n".join(
chunk.encode('ascii', 'ignore').decode('ascii')
for chunk in chunks[:3]
)
response = llm.invoke(
f"""Based on the following context from a research paper, {prompt}
Context:
{context}
Additional Instructions:
- Provide specific examples and evidence from the text
- Use clear, academic language
- Maintain objectivity
- Include relevant quotes or data points
- Structure your response logically
- Use markdown formatting for clarity
Please provide a clear and specific response.""",
temperature=0.3
)
analysis_results[aspect] = response.content[:MAX_RESPONSE_LENGTH]
except Exception as e:
analysis_results[aspect] = f"Analysis failed: {str(e)}"
return analysis_results
def process_pdf(pdf_url):
try:
print(f"Starting PDF processing for: {pdf_url}")
response = requests.get(pdf_url, timeout=30)
response.raise_for_status()
pdf_file = BytesIO(response.content)
pdf_reader = PyPDF2.PdfReader(pdf_file)
# Clean and normalize the text
text = " ".join(
page.extract_text().encode('ascii', 'ignore').decode('ascii')
for page in pdf_reader.pages
)
if not text.strip():
return {'error': 'No text could be extracted from the PDF'}
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=2000,
chunk_overlap=200,
length_function=len,
separators=["\n\n", "\n", " ", ""]
)
chunks = text_splitter.split_text(text)[:MAX_CHUNKS]
analysis = generate_analysis(chunks)
return {
'success': True,
'analysis': analysis
}
except Exception as e:
return {'error': f"PDF processing failed: {str(e)}"}
@login_manager.user_loader
def load_user(user_id):
if 'user_data' in session:
user_data = session['user_data']
return User(user_data['uid'], user_data['email'])
return None
# User management functions
def load_users():
try:
with open('users.json', 'r') as f:
return json.load(f)
except FileNotFoundError:
return {}
def save_users(users):
with open('users.json', 'w') as f:
json.dump(users, f)
# Routes
@app.route('/')
@login_required
def index():
return render_template('index.html')
@app.route('/login', methods=['GET'])
def login():
if current_user.is_authenticated:
return redirect(url_for('index'))
return render_template('login.html')
@app.route('/register', methods=['GET'])
def register():
if current_user.is_authenticated:
print("User is already authenticated")
return redirect(url_for('index'))
return render_template('register.html')
@app.route('/verify-token', methods=['POST'])
def verify_token():
try:
data = request.json
if not data or not data.get('uid') or not data.get('email'):
return jsonify({'error': 'Missing required data'}), 400
# Store user data in session
session['user_data'] = {
'uid': data['uid'],
'email': data['email']
}
# Create and login user
user = User(data['uid'], data['email'])
login_user(user)
return jsonify({'success': True, 'redirect': url_for('index')})
except Exception as e:
print(f"Verification error: {str(e)}") # Add logging
return jsonify({'error': str(e)}), 500
@app.route('/logout')
@login_required
def logout():
logout_user()
session.clear()
return redirect(url_for('login'))
@app.route('/search', methods=['POST'])
@login_required
def search():
try:
data = request.get_json()
paper_name = data.get('paper_name')
sort_by = data.get('sort_by', 'relevance') # Default to relevance
max_results = data.get('max_results', 20) # Increase to get more candidates for filtering
if not paper_name:
return jsonify({'error': 'No search query provided'}), 400
# Configure sorting based on user preference
sort_options = {
'relevance': arxiv.SortCriterion.Relevance,
'recent': arxiv.SortCriterion.SubmittedDate
}
sort_criterion = sort_options.get(sort_by, arxiv.SortCriterion.Relevance)
# Perform the search
search = arxiv.Search(
query=paper_name,
max_results=max_results,
sort_by=sort_criterion
)
results = []
for paper in search.results():
# Extract citation count if available (not directly provided by arXiv API)
citation_count = 0
# You could integrate with a citation API here (e.g., Semantic Scholar)
# For now, we'll use proxies for popularity like:
# - Papers with DOIs (published in journals) tend to be more established
# - Papers with more authors often have more visibility
# - More recent papers in the results might indicate ongoing relevance
has_doi = hasattr(paper, 'doi') and paper.doi is not None
author_count = len(paper.authors)
# Calculate a simple "popularity score" (this is a heuristic)
popularity_score = (10 if has_doi else 0) + min(author_count, 5)
results.append({
'title': paper.title,
'authors': ', '.join(author.name for author in paper.authors),
'abstract': paper.summary,
'pdf_link': paper.pdf_url,
'arxiv_link': paper.entry_id,
'published': paper.published.strftime('%Y-%m-%d'),
'category': paper.primary_category,
'comment': paper.comment if hasattr(paper, 'comment') else None,
'doi': paper.doi if hasattr(paper, 'doi') else None,
'popularity_score': popularity_score # Add popularity score
})
# Sort results by our popularity score (higher is better)
results.sort(key=lambda x: x['popularity_score'], reverse=True)
return jsonify(results)
except Exception as e:
print(f"Search error: {str(e)}")
return jsonify({'error': f'Failed to search papers: {str(e)}'}), 500
@app.route('/perform-rag', methods=['POST'])
@login_required
def perform_rag():
try:
pdf_url = request.json.get('pdf_url')
if not pdf_url:
return jsonify({'error': 'PDF URL is required'}), 400
result = process_pdf(pdf_url)
if 'error' in result:
return jsonify({'error': result['error']}), 500
return jsonify(result)
except Exception as e:
return jsonify({'error': str(e)}), 500
@app.route('/chat-with-paper', methods=['POST'])
@login_required
def chat_with_paper():
try:
pdf_url = request.json.get('pdf_url')
question = request.json.get('question')
if not pdf_url or not question:
return jsonify({'error': 'PDF URL and question are required'}), 400
# Get PDF text and create chunks
response = requests.get(pdf_url, timeout=30)
response.raise_for_status()
pdf_file = BytesIO(response.content)
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = " ".join(page.extract_text() for page in pdf_reader.pages)
if not text.strip():
return jsonify({'error': 'No text could be extracted from the PDF'})
# Create text chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=2000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)[:MAX_CHUNKS]
# Generate embeddings for chunks
chunk_embeddings = embeddings_model.embed_documents(chunks)
# Generate embedding for the question
question_embedding = embeddings_model.embed_query(question)
# Find most relevant chunks using cosine similarity
similarities = []
for chunk_embedding in chunk_embeddings:
similarity = np.dot(question_embedding, chunk_embedding) / (
np.linalg.norm(question_embedding) * np.linalg.norm(chunk_embedding)
)
similarities.append(similarity)
# Get top 3 most relevant chunks
top_chunk_indices = np.argsort(similarities)[-3:][::-1]
relevant_chunks = [chunks[i] for i in top_chunk_indices]
# Construct prompt with relevant context
context = "\n\n".join(relevant_chunks)
prompt = f"""Based on the following relevant excerpts from the research paper, please answer this question: {question}
Context from paper:
{context}
Please provide a clear, specific, and accurate response based solely on the information provided in these excerpts. If the answer cannot be fully determined from the given context, please indicate this in your response."""
# Generate response using Groq
response = llm.invoke(prompt)
# Format and return response
formatted_response = response.content.strip()
# Add source citations
source_info = "\n\nThis response is based on specific sections from the paper."
return jsonify({
'response': formatted_response + source_info,
'relevance_scores': [float(similarities[i]) for i in top_chunk_indices]
})
except Exception as e:
print(f"Chat error: {str(e)}")
return jsonify({'error': f'Failed to process request: {str(e)}'}), 500
@app.route('/api/data', methods=['GET'])
def get_data():
try:
# Example: Get documents from a collection
docs = load_users()
data = [{doc_id: doc_data} for doc_id, doc_data in docs.items()]
return jsonify(data), 200
except Exception as e:
return jsonify({"error": str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)
|