Spaces:
Running
Running
File size: 12,348 Bytes
5b65de2 deb090d 82dac66 5b65de2 deb090d 0972444 f2611d0 deb090d 5b65de2 deb090d 65726e0 deb090d aff287e deb090d aff287e deb090d aff287e 5b65de2 82dac66 5b65de2 82dac66 aff287e 5b65de2 deb090d 82dac66 deb090d 1edfa40 deb090d 0972444 deb090d 5b65de2 deb090d 82dac66 5b65de2 82dac66 deb090d 82dac66 5b65de2 82dac66 deb090d 1edfa40 deb090d 82dac66 5b65de2 82dac66 deb090d 82dac66 5b65de2 1edfa40 82dac66 deb090d 1edfa40 deb090d 82dac66 deb090d 5b65de2 82dac66 5b65de2 82dac66 5b65de2 82dac66 5b65de2 82dac66 5b65de2 82dac66 5b65de2 82dac66 5b65de2 82dac66 deb090d 82dac66 5b65de2 82dac66 deb090d 5b65de2 deb090d 5b65de2 deb090d 5b65de2 deb090d 82dac66 5b65de2 82dac66 5b65de2 82dac66 5b65de2 82dac66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
from qdrant_client import QdrantClient, models, grpc
from qdrant_client.http.models import PointStruct, PayloadSchemaType
from sentence_transformers import SentenceTransformer
import uuid
import os
import logging
from typing import List, Dict, Any
from dotenv import load_dotenv
import time
import asyncio
# Load environment variables
load_dotenv()
# Configure logging
logger = logging.getLogger(__name__)
class VectorStore:
def __init__(self):
self.collection_name = "ca-documents"
# Get Qdrant configuration from environment variables
qdrant_url = os.getenv("QDRANT_URL")
qdrant_api_key = os.getenv("QDRANT_API_KEY")
if not qdrant_url or not qdrant_api_key:
raise ValueError("QDRANT_URL and QDRANT_API_KEY environment variables are required")
# Connect to Qdrant cluster with API key
self.client = QdrantClient(
url=qdrant_url,
api_key=qdrant_api_key,
prefer_grpc=True,
)
print("Connected to Qdrant")
# Initialize embedding model with offline support
self.embedding_model = self._initialize_embedding_model()
async def initialize(self):
"""Asynchronous initialization to be called after object creation."""
await self._ensure_collection_exists()
def _initialize_embedding_model(self):
"""Initialize the embedding model from a local directory"""
try:
print("Loading sentence transformer model from local path...")
# Resolve local path to model directory
current_dir = os.path.dirname(os.path.abspath(__file__))
local_model_path = os.path.join(current_dir, "..", "model", "all-MiniLM-L6-v2")
model = SentenceTransformer(local_model_path)
print("Successfully loaded local sentence transformer model")
return model
except Exception as e:
print(f"Failed to load local model: {e}")
raise RuntimeError("Failed to initialize embedding model from local path")
async def _collection_exists_and_accessible(self) -> bool:
"""
Check if collection exists and is accessible by trying to get its info.
Returns:
bool: True if collection exists and is accessible
"""
try:
# Try to get collection info - this is more reliable than just listing collections
collection_info = await self.client.get_collection(self.collection_name)
print(f"Collection '{self.collection_name}' exists and is accessible")
return True
except Exception as e:
print(f"Collection '{self.collection_name}' is not accessible: {e}")
return False
async def _create_collection(self) -> bool:
"""
Create the collection with proper configuration.
Returns:
bool: True if collection was created successfully or already exists
"""
try:
print(f"Creating new collection: {self.collection_name}")
# Vector size for all-MiniLM-L6-v2 is 384
vector_size = 384
# Create collection with vector configuration
await self.client.create_collection(
collection_name=self.collection_name,
vectors_config=models.VectorParams(
size=vector_size,
distance=models.Distance.COSINE
),
hnsw_config=models.HnswConfigDiff(
payload_m=16,
m=0,
),
)
# Wait a moment for collection to be fully created
await asyncio.sleep(1)
# Create payload indices
payload_indices = {
"document_id": PayloadSchemaType.KEYWORD,
"content": PayloadSchemaType.TEXT
}
for field_name, schema_type in payload_indices.items():
try:
await self.client.create_payload_index(
collection_name=self.collection_name,
field_name=field_name,
field_schema=schema_type
)
except Exception as idx_error:
print(f"Warning: Failed to create index for {field_name}: {idx_error}")
print(f"Successfully created collection: {self.collection_name}")
return True
except Exception as e:
# Check if the error is because collection already exists
if "already exists" in str(e).lower() or "ALREADY_EXISTS" in str(e):
print(f"Collection '{self.collection_name}' already exists, using existing collection")
return True
error_msg = f"Failed to create collection {self.collection_name}: {str(e)}"
logger.error(error_msg, exc_info=True)
print(error_msg)
return False
async def _ensure_collection_exists(self) -> bool:
"""
Ensure collection exists and is accessible, create if necessary.
Returns:
bool: True if collection exists or was created successfully
"""
try:
# First, check if collection exists and is accessible
if await self._collection_exists_and_accessible():
print(f"Collection '{self.collection_name}' is ready to use")
return True
# If not accessible, try to create it (or verify it exists)
print(f"Collection '{self.collection_name}' not immediately accessible, attempting to create/verify...")
created = await self._create_collection()
# After creation attempt, verify it's accessible
if created and await self._collection_exists_and_accessible():
print(f"Collection '{self.collection_name}' is now ready to use")
return True
elif created:
# Created successfully but not immediately accessible, which is okay
print(f"Collection '{self.collection_name}' created/verified successfully")
return True
else:
return False
except Exception as e:
error_msg = f"Failed to ensure collection exists: {str(e)}"
logger.error(error_msg, exc_info=True)
print(error_msg)
return False
async def add_document(self, text: str, metadata: Dict = None) -> bool:
"""Add a document to the collection with retry logic"""
max_retries = 3
retry_delay = 1
for attempt in range(max_retries):
try:
# Ensure collection exists before adding document
if not await self._collection_exists_and_accessible():
print("Collection not accessible, trying to recreate...")
if not await self._create_collection():
raise Exception("Failed to create collection")
# Generate embedding
embedding = self.embedding_model.encode([text])[0]
# Generate document ID
document_id = str(uuid.uuid4())
# Create payload with indexed fields
payload = {
"document_id": document_id, # KEYWORD index
"content": text, # TEXT index - stores the actual text content
}
# Add metadata fields if provided
if metadata:
payload.update(metadata)
# Create point
point = PointStruct(
id=document_id,
vector=embedding.tolist(),
payload=payload
)
# Store in Qdrant
result = await self.client.upsert(
collection_name=self.collection_name,
points=[point]
)
# Check if upsert was successful
if hasattr(result, 'status') and result.status == 'completed':
return True
elif hasattr(result, 'operation_id'):
return True
else:
print(f"Unexpected upsert result: {result}")
return True # Assume success if no error was raised
except Exception as e:
print(f"Error adding document (attempt {attempt + 1}/{max_retries}): {e}")
if "Not found" in str(e) and "doesn't exist" in str(e):
# Collection doesn't exist, try to recreate
print("Collection not found, attempting to recreate...")
await self._create_collection()
if attempt < max_retries - 1:
print(f"Retrying in {retry_delay} seconds...")
await asyncio.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
else:
print(f"Failed to add document after {max_retries} attempts")
return False
return False
async def search_similar(self, query: str, limit: int = 5) -> List[Dict]:
"""Search for similar documents with error handling"""
try:
# Ensure collection exists before searching
if not await self._collection_exists_and_accessible():
print("Collection not accessible for search")
return []
# Generate query embedding
query_embedding = self.embedding_model.encode([query])[0]
# Search in Qdrant
results = await self.client.search(
collection_name=self.collection_name,
query_vector=query_embedding.tolist(),
limit=limit
)
# Return results
return [
{
"text": hit.payload["content"], # Use content field
"document_id": hit.payload.get("document_id"),
"score": hit.score,
# Include any additional metadata fields
**{k: v for k, v in hit.payload.items() if k not in ["content", "document_id"]}
}
for hit in results
]
except Exception as e:
print(f"Error searching: {e}")
return []
async def get_collection_info(self) -> Dict:
"""Get information about the collection"""
try:
collection_info = await self.client.get_collection(self.collection_name)
return {
"name": collection_info.config.name,
"vector_size": collection_info.config.params.vectors.size,
"distance": collection_info.config.params.vectors.distance,
"points_count": collection_info.points_count,
"indexed_only": collection_info.config.params.vectors.on_disk
}
except Exception as e:
print(f"Error getting collection info: {e}")
return {}
async def verify_collection_health(self) -> bool:
"""Verify that the collection is healthy and accessible"""
try:
# Try to get collection info
info = await self.get_collection_info()
if not info:
return False
# Try a simple search to verify functionality
test_results = await self.search_similar("test query", limit=1)
# This should not fail even if no results are found
print(f"Collection health check passed. Points count: {info.get('points_count', 0)}")
return True
except Exception as e:
print(f"Collection health check failed: {e}")
return False |