File size: 9,282 Bytes
deb090d
 
 
 
 
 
 
 
 
 
 
 
 
1433a41
 
deb090d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2611d0
deb090d
65726e0
deb090d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b65de2
deb090d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b65de2
deb090d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b65de2
deb090d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b65de2
deb090d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from fastapi import FastAPI, File, UploadFile, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse, JSONResponse, StreamingResponse
from pydantic import BaseModel
import os
import tempfile
import uvicorn
from typing import List, Optional
import logging
from contextlib import asynccontextmanager

# Import your existing RAG system
from .rag import RAG
from .vector_store import VectorStore

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Pydantic models
class QuestionRequest(BaseModel):
    question: str

class QuestionResponse(BaseModel):
    answer: str
    sources: Optional[List[str]] = []

class SearchRequest(BaseModel):
    query: str
    limit: Optional[int] = 5

class StatusResponse(BaseModel):
    status: str
    message: str
    version: str

# Global variables
rag_system = None

@asynccontextmanager
async def lifespan(app: FastAPI):
    # Startup
    global rag_system
    try:
        # Initialize RAG system
        google_api_key = os.getenv("GOOGLE_API_KEY")
        if not google_api_key:
            raise ValueError("GOOGLE_API_KEY environment variable not set")
        
        collection_name = os.getenv("COLLECTION_NAME", "ca-documents")
        rag_system = RAG(google_api_key, collection_name)
        await rag_system.initialize()
        logger.info("RAG system initialized successfully")
        
    except Exception as e:
        logger.error(f"Failed to initialize RAG system: {e}")
        raise
    
    yield
    
    # Shutdown
    logger.info("Shutting down...")

# Create FastAPI app
app = FastAPI(
    title="CA Study Assistant API",
    description="Backend API for the CA Study Assistant RAG system",
    version="2.0.0",
    lifespan=lifespan
)

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Health check endpoint
@app.get("/health")
async def health_check():
    return {"status": "healthy", "message": "CA Study Assistant API is running"}

@app.post("/api/ask_stream")
async def ask_question_stream(request: QuestionRequest):
    """
    Ask a question to the RAG system and get a streaming response
    """
    try:
        if not rag_system:
            raise HTTPException(status_code=500, detail="RAG system not initialized")
        
        logger.info(f"Processing streaming question: {request.question[:100]}...")
        
        async def event_generator():
            try:
                async for chunk in rag_system.ask_question_stream(request.question):
                    if chunk:  # Only yield non-empty chunks
                        yield chunk
            except Exception as e:
                logger.error(f"Error during stream generation: {e}")
                # This part may not be sent if the connection is already closed.
                yield f"Error generating answer: {str(e)}"

        return StreamingResponse(event_generator(), media_type="text/plain")
        
    except Exception as e:
        logger.error(f"Error processing streaming question: {e}")
        raise HTTPException(status_code=500, detail=f"Error processing streaming question: {str(e)}")

@app.post("/api/upload")
async def upload_document(file: UploadFile = File(...)):
    """
    Upload a document to the RAG system
    """
    try:
        if not rag_system:
            raise HTTPException(status_code=500, detail="RAG system not initialized")
        
        # Validate file type
        allowed_extensions = ['.pdf', '.docx', '.txt']
        file_extension = os.path.splitext(file.filename)[1].lower()
        
        if file_extension not in allowed_extensions:
            raise HTTPException(
                status_code=400, 
                detail=f"Unsupported file type. Allowed types: {', '.join(allowed_extensions)}"
            )
        
        # Create temporary file
        with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as temp_file:
            content = await file.read()
            temp_file.write(content)
            temp_file_path = temp_file.name
        
        try:
            # Process the uploaded file
            logger.info(f"Processing uploaded file: {file.filename}")
            success = await rag_system.upload_document(temp_file_path)
            
            if success:
                return {
                    "status": "success",
                    "message": f"File '{file.filename}' uploaded and processed successfully",
                    "filename": file.filename,
                    "size": len(content)
                }
            else:
                raise HTTPException(status_code=500, detail="Failed to process uploaded file")
                
        finally:
            # Clean up temporary file
            if os.path.exists(temp_file_path):
                os.unlink(temp_file_path)
        
    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Error uploading document: {e}")
        raise HTTPException(status_code=500, detail=f"Error uploading document: {str(e)}")

@app.post("/api/search")
async def search_documents(request: SearchRequest):
    """
    Search for similar documents
    """
    try:
        if not rag_system:
            raise HTTPException(status_code=500, detail="RAG system not initialized")
        
        results = await rag_system.vector_store.search_similar(request.query, limit=request.limit)
        
        return {
            "status": "success",
            "results": results,
            "count": len(results)
        }
        
    except Exception as e:
        logger.error(f"Error searching documents: {e}")
        raise HTTPException(status_code=500, detail=f"Error searching documents: {str(e)}")

@app.get("/api/status", response_model=StatusResponse)
async def get_status():
    """
    Get system status
    """
    try:
        status = "healthy" if rag_system else "unhealthy"
        message = "RAG system is operational" if rag_system else "RAG system not initialized"
        
        return StatusResponse(
            status=status,
            message=message,
            version="2.0.0"
        )
        
    except Exception as e:
        logger.error(f"Error getting status: {e}")
        raise HTTPException(status_code=500, detail=f"Error getting status: {str(e)}")

@app.get("/api/collection/info")
async def get_collection_info():
    """
    Get information about the vector collection
    """
    try:
        if not rag_system:
            raise HTTPException(status_code=500, detail="RAG system not initialized")
        
        info = await rag_system.vector_store.get_collection_info()
        return {
            "status": "success",
            "collection_info": info
        }
        
    except Exception as e:
        logger.error(f"Error getting collection info: {e}")
        raise HTTPException(status_code=500, detail=f"Error getting collection info: {str(e)}")

frontend_build_path = "../frontend/build"
if os.path.exists(frontend_build_path):
    app.mount("/static", StaticFiles(directory=f"{frontend_build_path}/static"), name="static")
    
    @app.get("/{full_path:path}")
    async def serve_react_app(request: Request, full_path: str):
        """
        Serve React app for all non-API routes
        """
        # If it's an API route, let FastAPI handle it
        if full_path.startswith("api/"):
            raise HTTPException(status_code=404, detail="API endpoint not found")
        
        # For static files (images, etc.)
        if "." in full_path:
            file_path = f"{frontend_build_path}/{full_path}"
            if os.path.exists(file_path):
                return FileResponse(file_path)
            else:
                raise HTTPException(status_code=404, detail="File not found")
        
        # For all other routes, serve index.html (React Router will handle it)
        return FileResponse(f"{frontend_build_path}/index.html")

# Error handlers
@app.exception_handler(404)
async def not_found_handler(request: Request, exc: HTTPException):
    if request.url.path.startswith("/api/"):
        return JSONResponse(
            status_code=404,
            content={"detail": "API endpoint not found"}
        )
    
    # For non-API routes, serve React app
    if os.path.exists(f"{frontend_build_path}/index.html"):
        return FileResponse(f"{frontend_build_path}/index.html")
    else:
        return JSONResponse(
            status_code=404,
            content={"detail": "React app not built. Run 'npm run build' in the frontend directory."}
        )

@app.exception_handler(500)
async def internal_error_handler(request: Request, exc: Exception):
    logger.error(f"Internal server error: {exc}")
    return JSONResponse(
        status_code=500,
        content={"detail": "Internal server error"}
    )

if __name__ == "__main__":
    # Get port from environment or default to 8000
    port = int(os.getenv("PORT", 8000))
    uvicorn.run(
        "backend_api:app",
        host="0.0.0.0",
        port=port,
        reload=True,
        log_level="info"
    )