Spaces:
Runtime error
Runtime error
Commit
·
441421d
1
Parent(s):
bb67f61
Delete Medical Diagnosis App
Browse files- Medical Diagnosis App/.streamlit/config.toml +0 -6
- Medical Diagnosis App/.vscode/settings.json +0 -4
- Medical Diagnosis App/Home.py +0 -25
- Medical Diagnosis App/brain_labels.json +0 -6
- Medical Diagnosis App/labels.json +0 -6
- Medical Diagnosis App/models/brain_model.pth +0 -3
- Medical Diagnosis App/models/eye_model.pth +0 -3
- Medical Diagnosis App/models/timm_skin_model.pth +0 -3
- Medical Diagnosis App/models/timm_xray_model.pth +0 -3
- Medical Diagnosis App/pages/Brain.py +0 -156
- Medical Diagnosis App/pages/Chest.py +0 -163
- Medical Diagnosis App/pages/Model Dashboard.py +0 -7
- Medical Diagnosis App/pages/Skin.py +0 -145
- Medical Diagnosis App/requirements.txt +0 -11
- Medical Diagnosis App/skin_labels.json +0 -10
Medical Diagnosis App/.streamlit/config.toml
DELETED
|
@@ -1,6 +0,0 @@
|
|
| 1 |
-
[theme]
|
| 2 |
-
primaryColor="#38b2ac"
|
| 3 |
-
backgroundColor="#1a202c"
|
| 4 |
-
secondaryBackgroundColor="#2d3748"
|
| 5 |
-
textColor="#e2e8f0"
|
| 6 |
-
font='monospace'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/.vscode/settings.json
DELETED
|
@@ -1,4 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"editor.tabCompletion": "on",
|
| 3 |
-
"diffEditor.codeLens": true
|
| 4 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/Home.py
DELETED
|
@@ -1,25 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from PIL import Image
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
# Add a title
|
| 6 |
-
st.set_page_config(page_title="Select Diagnosis", layout="centered")
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
st.title("Medical Diagnosis App")
|
| 11 |
-
|
| 12 |
-
st.markdown("")
|
| 13 |
-
st.markdown("<li> Currently Brain Tumors , Xrays and Skin Leison Analysis are ready for diagnosis </li>"
|
| 14 |
-
"<li>The Models also explain what area in the images is the cause of diagnosis </li>"
|
| 15 |
-
"<li>Currently the models are trained on a small dataset and will be trained on a larger dataset in the future</li>"
|
| 16 |
-
'<li> The Application also provides generated information on how to diagnose the disease and what should the patient do in that case</li>'
|
| 17 |
-
,unsafe_allow_html=True)
|
| 18 |
-
|
| 19 |
-
with st.sidebar.container():
|
| 20 |
-
image = Image.open("/Users/vikram/Downloads/Meditechlogo.png")
|
| 21 |
-
st.image(image, caption='Meditech',use_column_width=True)
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/brain_labels.json
DELETED
|
@@ -1,6 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"0":"Glinomia",
|
| 3 |
-
"1": "Meningomia",
|
| 4 |
-
"2":"notumar",
|
| 5 |
-
"3": "pituary"
|
| 6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/labels.json
DELETED
|
@@ -1,6 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"0":"Covid19",
|
| 3 |
-
"1": "Normal",
|
| 4 |
-
"2":"Pneumonia",
|
| 5 |
-
"3": "Tuberculosis"
|
| 6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/models/brain_model.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:52a7a2393337e2dedca977e4729df96b2f55579c58cbd2263922d0f8752fd866
|
| 3 |
-
size 79728020
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/models/eye_model.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:9e83d4f41fd93bd35208cb9a1643158ee33b781ea111105fe614e2738edb3fe7
|
| 3 |
-
size 27238762
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/models/timm_skin_model.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:a5163d00507a13ccd735162fd43dd35b16cbb901bc06d407a4deb1cef194a0e2
|
| 3 |
-
size 16408803
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/models/timm_xray_model.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:fe8a9cda4e25a731216bb6503f36757e9ebde7251f2c1f34c1aa3489707419c4
|
| 3 |
-
size 93909024
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/pages/Brain.py
DELETED
|
@@ -1,156 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import timm
|
| 5 |
-
import torch
|
| 6 |
-
import torchmetrics
|
| 7 |
-
from torchmetrics import F1Score,Recall,Accuracy
|
| 8 |
-
import torch.optim.lr_scheduler as lr_scheduler
|
| 9 |
-
import torchvision.models as models
|
| 10 |
-
import lightning.pytorch as pl
|
| 11 |
-
import torchvision
|
| 12 |
-
from lightning.pytorch.loggers import WandbLogger
|
| 13 |
-
import shap
|
| 14 |
-
import matplotlib.pyplot as plt
|
| 15 |
-
import json
|
| 16 |
-
from transformers import pipeline, set_seed
|
| 17 |
-
from transformers import BioGptTokenizer, BioGptForCausalLM
|
| 18 |
-
text_model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
|
| 19 |
-
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
|
| 20 |
-
labels_path = '/Users/vikram/Python/Medical Diagnosis App/brain_labels.json'
|
| 21 |
-
from captum.attr import DeepLift , visualization
|
| 22 |
-
|
| 23 |
-
with open(labels_path) as json_data:
|
| 24 |
-
idx_to_labels = json.load(json_data)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
class FineTuneModel(pl.LightningModule):
|
| 29 |
-
def __init__(self, model_name, num_classes, learning_rate, dropout_rate,beta1,beta2,eps):
|
| 30 |
-
super().__init__()
|
| 31 |
-
self.model_name = model_name
|
| 32 |
-
self.num_classes = num_classes
|
| 33 |
-
self.learning_rate = learning_rate
|
| 34 |
-
self.beta1 = beta1
|
| 35 |
-
self.beta2 = beta2
|
| 36 |
-
self.eps = eps
|
| 37 |
-
self.dropout_rate = dropout_rate
|
| 38 |
-
self.model = timm.create_model(self.model_name, pretrained=True,num_classes=self.num_classes)
|
| 39 |
-
self.loss_fn = nn.CrossEntropyLoss()
|
| 40 |
-
self.f1 = F1Score(task='multiclass', num_classes=self.num_classes)
|
| 41 |
-
self.recall = Recall(task='multiclass', num_classes=self.num_classes)
|
| 42 |
-
self.accuracy = Accuracy(task='multiclass', num_classes=self.num_classes)
|
| 43 |
-
|
| 44 |
-
#for param in self.model.parameters():
|
| 45 |
-
#param.requires_grad = True
|
| 46 |
-
#self.model.classifier= nn.Sequential(nn.Dropout(p=self.dropout_rate),nn.Linear(self.model.classifier.in_features, self.num_classes))
|
| 47 |
-
#self.model.classifier.requires_grad = True
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def forward(self, x):
|
| 51 |
-
return self.model(x)
|
| 52 |
-
|
| 53 |
-
def training_step(self, batch, batch_idx):
|
| 54 |
-
x, y = batch
|
| 55 |
-
y_hat = self.model(x)
|
| 56 |
-
loss = self.loss_fn(y_hat, y)
|
| 57 |
-
acc = self.accuracy(y_hat.argmax(dim=1),y)
|
| 58 |
-
f1 = self.f1(y_hat.argmax(dim=1),y)
|
| 59 |
-
recall = self.recall(y_hat.argmax(dim=1),y)
|
| 60 |
-
self.log('train_loss', loss,on_step=False,on_epoch=True)
|
| 61 |
-
self.log('train_acc', acc,on_step=False,on_epoch = True)
|
| 62 |
-
self.log('train_f1',f1,on_step=False,on_epoch=True)
|
| 63 |
-
self.log('train_recall',recall,on_step=False,on_epoch=True)
|
| 64 |
-
return loss
|
| 65 |
-
|
| 66 |
-
def validation_step(self, batch, batch_idx):
|
| 67 |
-
x, y = batch
|
| 68 |
-
y_hat = self.model(x)
|
| 69 |
-
loss = self.loss_fn(y_hat, y)
|
| 70 |
-
acc = self.accuracy(y_hat.argmax(dim=1),y)
|
| 71 |
-
f1 = self.f1(y_hat.argmax(dim=1),y)
|
| 72 |
-
recall = self.recall(y_hat.argmax(dim=1),y)
|
| 73 |
-
self.log('val_loss', loss,on_step=False,on_epoch=True)
|
| 74 |
-
self.log('val_acc', acc,on_step=False,on_epoch=True)
|
| 75 |
-
self.log('val_f1',f1,on_step=False,on_epoch=True)
|
| 76 |
-
self.log('val_recall',recall,on_step=False,on_epoch=True)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def configure_optimizers(self):
|
| 80 |
-
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate,betas=(self.beta1,self.beta2),eps=self.eps)
|
| 81 |
-
scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
|
| 82 |
-
return {'optimizer': optimizer, 'lr_scheduler': scheduler}
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
#load model
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
st.markdown("<h1 style='text-align: center; '>Brain Tumor Diagnosis</h1>",unsafe_allow_html=True)
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
# Display a file uploader widget for the user to upload an image
|
| 97 |
-
|
| 98 |
-
uploaded_file = st.file_uploader("Choose an Brain MRI image file", type=["jpg", "jpeg", "png"])
|
| 99 |
-
|
| 100 |
-
# Load the uploaded image, or display emojis if no file was uploaded
|
| 101 |
-
with st.container():
|
| 102 |
-
if uploaded_file is not None:
|
| 103 |
-
|
| 104 |
-
image = Image.open(uploaded_file)
|
| 105 |
-
st.image(image, caption='Diagnosis', use_column_width=True)
|
| 106 |
-
model = timm.create_model(model_name='efficientnet_b1', pretrained=True,num_classes=4)
|
| 107 |
-
data_cfg = timm.data.resolve_data_config(model.pretrained_cfg)
|
| 108 |
-
transform = timm.data.create_transform(**data_cfg)
|
| 109 |
-
model_transforms = torchvision.transforms.Compose([transform])
|
| 110 |
-
transformed_image = model_transforms(image)
|
| 111 |
-
brain_model = torch.load('models/brain_model.pth')
|
| 112 |
-
|
| 113 |
-
brain_model.eval()
|
| 114 |
-
with torch.inference_mode():
|
| 115 |
-
with st.progress(100):
|
| 116 |
-
|
| 117 |
-
#class_names = ['Glinomia','Meningomia','notumar','pituary']
|
| 118 |
-
prediction = torch.nn.functional.softmax(brain_model(transformed_image.unsqueeze(dim=0))[0], dim=0)
|
| 119 |
-
prediction_score, pred_label_idx = torch.topk(prediction, 1)
|
| 120 |
-
pred_label_idx.squeeze_()
|
| 121 |
-
predicted_label = idx_to_labels[str(pred_label_idx.item())]
|
| 122 |
-
st.write( f'Predicted Label: {predicted_label}')
|
| 123 |
-
if st.button('Know More'):
|
| 124 |
-
generator = pipeline("text-generation",model=text_model,tokenizer=tokenizer)
|
| 125 |
-
input_text = f"Patient has {predicted_label} and is advised to take the following medicines:"
|
| 126 |
-
with st.spinner('Generating Text'):
|
| 127 |
-
generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)
|
| 128 |
-
st.markdown(generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)[0]['generated_text'])
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
else:
|
| 143 |
-
st.success("Please upload an image file 🧠")
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
## Model Explainibilty Dashboard using Captum
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/pages/Chest.py
DELETED
|
@@ -1,163 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import timm
|
| 5 |
-
import torch
|
| 6 |
-
import time
|
| 7 |
-
import torchmetrics
|
| 8 |
-
from torchmetrics import F1Score,Recall,Accuracy
|
| 9 |
-
import torch.optim.lr_scheduler as lr_scheduler
|
| 10 |
-
import torchvision.models as models
|
| 11 |
-
import lightning.pytorch as pl
|
| 12 |
-
import torchvision
|
| 13 |
-
from lightning.pytorch.loggers import WandbLogger
|
| 14 |
-
import captum
|
| 15 |
-
import matplotlib.pyplot as plt
|
| 16 |
-
import json
|
| 17 |
-
from transformers import pipeline, set_seed
|
| 18 |
-
from transformers import BioGptTokenizer, BioGptForCausalLM
|
| 19 |
-
text_model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
|
| 20 |
-
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
|
| 21 |
-
labels_path = '/Users/vikram/Python/Medical Diagnosis App/labels.json'
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
with open(labels_path) as json_data:
|
| 25 |
-
idx_to_labels = json.load(json_data)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
class FineTuneModel(pl.LightningModule):
|
| 30 |
-
def __init__(self, model_name, num_classes, learning_rate, dropout_rate,beta1,beta2,eps):
|
| 31 |
-
super().__init__()
|
| 32 |
-
self.model_name = model_name
|
| 33 |
-
self.num_classes = num_classes
|
| 34 |
-
self.learning_rate = learning_rate
|
| 35 |
-
self.beta1 = beta1
|
| 36 |
-
self.beta2 = beta2
|
| 37 |
-
self.eps = eps
|
| 38 |
-
self.dropout_rate = dropout_rate
|
| 39 |
-
self.model = timm.create_model(self.model_name, pretrained=True,num_classes=self.num_classes)
|
| 40 |
-
self.loss_fn = nn.CrossEntropyLoss()
|
| 41 |
-
self.f1 = F1Score(task='multiclass', num_classes=self.num_classes)
|
| 42 |
-
self.recall = Recall(task='multiclass', num_classes=self.num_classes)
|
| 43 |
-
self.accuracy = Accuracy(task='multiclass', num_classes=self.num_classes)
|
| 44 |
-
|
| 45 |
-
#for param in self.model.parameters():
|
| 46 |
-
#param.requires_grad = True
|
| 47 |
-
#self.model.classifier= nn.Sequential(nn.Dropout(p=self.dropout_rate),nn.Linear(self.model.classifier.in_features, self.num_classes))
|
| 48 |
-
#self.model.classifier.requires_grad = True
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
def forward(self, x):
|
| 52 |
-
return self.model(x)
|
| 53 |
-
|
| 54 |
-
def training_step(self, batch, batch_idx):
|
| 55 |
-
x, y = batch
|
| 56 |
-
y_hat = self.model(x)
|
| 57 |
-
loss = self.loss_fn(y_hat, y)
|
| 58 |
-
acc = self.accuracy(y_hat.argmax(dim=1),y)
|
| 59 |
-
f1 = self.f1(y_hat.argmax(dim=1),y)
|
| 60 |
-
recall = self.recall(y_hat.argmax(dim=1),y)
|
| 61 |
-
self.log('train_loss', loss,on_step=False,on_epoch=True)
|
| 62 |
-
self.log('train_acc', acc,on_step=False,on_epoch = True)
|
| 63 |
-
self.log('train_f1',f1,on_step=False,on_epoch=True)
|
| 64 |
-
self.log('train_recall',recall,on_step=False,on_epoch=True)
|
| 65 |
-
return loss
|
| 66 |
-
|
| 67 |
-
def validation_step(self, batch, batch_idx):
|
| 68 |
-
x, y = batch
|
| 69 |
-
y_hat = self.model(x)
|
| 70 |
-
loss = self.loss_fn(y_hat, y)
|
| 71 |
-
acc = self.accuracy(y_hat.argmax(dim=1),y)
|
| 72 |
-
f1 = self.f1(y_hat.argmax(dim=1),y)
|
| 73 |
-
recall = self.recall(y_hat.argmax(dim=1),y)
|
| 74 |
-
self.log('val_loss', loss,on_step=False,on_epoch=True)
|
| 75 |
-
self.log('val_acc', acc,on_step=False,on_epoch=True)
|
| 76 |
-
self.log('val_f1',f1,on_step=False,on_epoch=True)
|
| 77 |
-
self.log('val_recall',recall,on_step=False,on_epoch=True)
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
def configure_optimizers(self):
|
| 81 |
-
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate,betas=(self.beta1,self.beta2),eps=self.eps)
|
| 82 |
-
scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
|
| 83 |
-
return {'optimizer': optimizer, 'lr_scheduler': scheduler}
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
#load model
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
st.markdown("<h1 style='text-align: center; '>Chest Xray Diagnosis</h1>",unsafe_allow_html=True)
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
# Display a file uploader widget for the user to upload an image
|
| 98 |
-
uploaded_file = st.file_uploader("Choose an Chest XRay Image file", type=["jpg", "jpeg", "png"])
|
| 99 |
-
|
| 100 |
-
# Load the uploaded image, or display emojis if no file was uploaded
|
| 101 |
-
if uploaded_file is not None:
|
| 102 |
-
|
| 103 |
-
image = Image.open(uploaded_file)
|
| 104 |
-
st.image(image, caption='Diagnosis',width=224, use_column_width=True)
|
| 105 |
-
model = timm.create_model(model_name='efficientnet_b2', pretrained=True,num_classes=4)
|
| 106 |
-
data_cfg = timm.data.resolve_data_config(model.pretrained_cfg)
|
| 107 |
-
transform = timm.data.create_transform(**data_cfg)
|
| 108 |
-
model_transforms = torchvision.transforms.Compose([transform])
|
| 109 |
-
transformed_image = model_transforms(image)
|
| 110 |
-
xray_model = torch.load('models/timm_xray_model.pth')
|
| 111 |
-
|
| 112 |
-
xray_model.eval()
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
with torch.inference_mode():
|
| 117 |
-
with st.progress(100):
|
| 118 |
-
|
| 119 |
-
prediction = torch.nn.functional.softmax(xray_model(transformed_image.unsqueeze(dim=0))[0], dim=0)
|
| 120 |
-
prediction_score, pred_label_idx = torch.topk(prediction, 1)
|
| 121 |
-
pred_label_idx.squeeze_()
|
| 122 |
-
predicted_label = idx_to_labels[str(pred_label_idx.item())]
|
| 123 |
-
st.write( f'Predicted Label: {predicted_label}')
|
| 124 |
-
if st.button('Know More'):
|
| 125 |
-
generator = pipeline("text-generation",model=text_model,tokenizer=tokenizer)
|
| 126 |
-
input_text = f"Patient has {predicted_label} and is advised to take the following medicines:"
|
| 127 |
-
with st.spinner('Generating Text'):
|
| 128 |
-
generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)
|
| 129 |
-
st.markdown(generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)[0]['generated_text'])
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
else:
|
| 142 |
-
st.success("Please upload an image file ⚕️")
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/pages/Model Dashboard.py
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
|
| 3 |
-
st.components.v1.iframe(src = 'https://api.wandb.ai/links/vikramxd/nw5ru81j',width = 1000, height = 800,scrolling = True)
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/pages/Skin.py
DELETED
|
@@ -1,145 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import timm
|
| 5 |
-
import torch
|
| 6 |
-
import torchmetrics
|
| 7 |
-
from torchmetrics import F1Score,Recall,Accuracy
|
| 8 |
-
import torch.optim.lr_scheduler as lr_scheduler
|
| 9 |
-
import torchvision.models as models
|
| 10 |
-
import lightning.pytorch as pl
|
| 11 |
-
import torchvision
|
| 12 |
-
from lightning.pytorch.loggers import WandbLogger
|
| 13 |
-
import shap
|
| 14 |
-
import matplotlib.pyplot as plt
|
| 15 |
-
import json
|
| 16 |
-
from transformers import pipeline, set_seed
|
| 17 |
-
from transformers import BioGptTokenizer, BioGptForCausalLM
|
| 18 |
-
text_model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
|
| 19 |
-
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
|
| 20 |
-
labels_path = '/Users/vikram/Python/Medical Diagnosis App/skin_labels.json'
|
| 21 |
-
from captum.attr import DeepLift , visualization
|
| 22 |
-
|
| 23 |
-
with open(labels_path) as json_data:
|
| 24 |
-
idx_to_labels = json.load(json_data)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
class FineTuneModel(pl.LightningModule):
|
| 29 |
-
def __init__(self, model_name, num_classes, learning_rate, dropout_rate,beta1,beta2,eps):
|
| 30 |
-
super().__init__()
|
| 31 |
-
self.model_name = model_name
|
| 32 |
-
self.num_classes = num_classes
|
| 33 |
-
self.learning_rate = learning_rate
|
| 34 |
-
self.beta1 = beta1
|
| 35 |
-
self.beta2 = beta2
|
| 36 |
-
self.eps = eps
|
| 37 |
-
self.dropout_rate = dropout_rate
|
| 38 |
-
self.model = timm.create_model(self.model_name, pretrained=True,num_classes=self.num_classes)
|
| 39 |
-
self.loss_fn = nn.CrossEntropyLoss()
|
| 40 |
-
self.f1 = F1Score(task='multiclass', num_classes=self.num_classes)
|
| 41 |
-
self.recall = Recall(task='multiclass', num_classes=self.num_classes)
|
| 42 |
-
self.accuracy = Accuracy(task='multiclass', num_classes=self.num_classes)
|
| 43 |
-
|
| 44 |
-
#for param in self.model.parameters():
|
| 45 |
-
#param.requires_grad = True
|
| 46 |
-
#self.model.classifier= nn.Sequential(nn.Dropout(p=self.dropout_rate),nn.Linear(self.model.classifier.in_features, self.num_classes))
|
| 47 |
-
#self.model.classifier.requires_grad = True
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
def forward(self, x):
|
| 51 |
-
return self.model(x)
|
| 52 |
-
|
| 53 |
-
def training_step(self, batch, batch_idx):
|
| 54 |
-
x, y = batch
|
| 55 |
-
y_hat = self.model(x)
|
| 56 |
-
loss = self.loss_fn(y_hat, y)
|
| 57 |
-
acc = self.accuracy(y_hat.argmax(dim=1),y)
|
| 58 |
-
f1 = self.f1(y_hat.argmax(dim=1),y)
|
| 59 |
-
recall = self.recall(y_hat.argmax(dim=1),y)
|
| 60 |
-
self.log('train_loss', loss,on_step=False,on_epoch=True)
|
| 61 |
-
self.log('train_acc', acc,on_step=False,on_epoch = True)
|
| 62 |
-
self.log('train_f1',f1,on_step=False,on_epoch=True)
|
| 63 |
-
self.log('train_recall',recall,on_step=False,on_epoch=True)
|
| 64 |
-
return loss
|
| 65 |
-
|
| 66 |
-
def validation_step(self, batch, batch_idx):
|
| 67 |
-
x, y = batch
|
| 68 |
-
y_hat = self.model(x)
|
| 69 |
-
loss = self.loss_fn(y_hat, y)
|
| 70 |
-
acc = self.accuracy(y_hat.argmax(dim=1),y)
|
| 71 |
-
f1 = self.f1(y_hat.argmax(dim=1),y)
|
| 72 |
-
recall = self.recall(y_hat.argmax(dim=1),y)
|
| 73 |
-
self.log('val_loss', loss,on_step=False,on_epoch=True)
|
| 74 |
-
self.log('val_acc', acc,on_step=False,on_epoch=True)
|
| 75 |
-
self.log('val_f1',f1,on_step=False,on_epoch=True)
|
| 76 |
-
self.log('val_recall',recall,on_step=False,on_epoch=True)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def configure_optimizers(self):
|
| 80 |
-
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate,betas=(self.beta1,self.beta2),eps=self.eps)
|
| 81 |
-
scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
|
| 82 |
-
return {'optimizer': optimizer, 'lr_scheduler': scheduler}
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
#load model
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
st.markdown("<h1 style='text-align: center; '>Skin Leision Diagnosis</h1>",unsafe_allow_html=True)
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
# Display a file uploader widget for the user to upload an image
|
| 97 |
-
|
| 98 |
-
uploaded_file = st.file_uploader("Choose an Skin image file", type=["jpg", "jpeg", "png"])
|
| 99 |
-
|
| 100 |
-
# Load the uploaded image, or display emojis if no file was uploaded
|
| 101 |
-
with st.container():
|
| 102 |
-
if uploaded_file is not None:
|
| 103 |
-
|
| 104 |
-
image = Image.open(uploaded_file)
|
| 105 |
-
st.image(image, caption='Diagnosis', use_column_width=True)
|
| 106 |
-
model = timm.create_model(model_name='efficientnet_b0', pretrained=True,num_classes=4)
|
| 107 |
-
data_cfg = timm.data.resolve_data_config(model.pretrained_cfg)
|
| 108 |
-
transform = timm.data.create_transform(**data_cfg)
|
| 109 |
-
model_transforms = torchvision.transforms.Compose([transform])
|
| 110 |
-
transformed_image = model_transforms(image)
|
| 111 |
-
brain_model = torch.load('models/timm_skin_model.pth')
|
| 112 |
-
|
| 113 |
-
brain_model.eval()
|
| 114 |
-
with torch.inference_mode():
|
| 115 |
-
with st.progress(100):
|
| 116 |
-
|
| 117 |
-
#class_names = ['Glinomia','Meningomia','notumar','pituary']
|
| 118 |
-
prediction = torch.nn.functional.softmax(brain_model(transformed_image.unsqueeze(dim=0))[0], dim=0)
|
| 119 |
-
prediction_score, pred_label_idx = torch.topk(prediction, 1)
|
| 120 |
-
pred_label_idx.squeeze_()
|
| 121 |
-
predicted_label = idx_to_labels[str(pred_label_idx.item())]
|
| 122 |
-
st.write( f'Predicted Label: {predicted_label}')
|
| 123 |
-
if st.button('Know More'):
|
| 124 |
-
generator = pipeline("text-generation",model=text_model,tokenizer=tokenizer)
|
| 125 |
-
input_text = f"Patient has {predicted_label} and is advised to take the following medicines:"
|
| 126 |
-
with st.spinner('Generating Text'):
|
| 127 |
-
generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)
|
| 128 |
-
st.markdown(generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)[0]['generated_text'])
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
else:
|
| 143 |
-
st.success("Please upload an image file 🧠")
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/requirements.txt
DELETED
|
@@ -1,11 +0,0 @@
|
|
| 1 |
-
captum==0.6.0
|
| 2 |
-
lightning==2.0.1
|
| 3 |
-
matplotlib==3.6.3
|
| 4 |
-
Pillow==9.5.0
|
| 5 |
-
shap==0.41.0
|
| 6 |
-
streamlit==1.20.0
|
| 7 |
-
timm==0.6.13
|
| 8 |
-
torch==2.0.0
|
| 9 |
-
torchmetrics==0.11.4
|
| 10 |
-
torchvision==0.15.1
|
| 11 |
-
transformers==4.27.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/skin_labels.json
DELETED
|
@@ -1,10 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"0":"actinic keratoses and intraepithelial carcinoma",
|
| 3 |
-
"1": "basal cell carcinoma",
|
| 4 |
-
"2":"benign keratosis-like lesions",
|
| 5 |
-
"3": "dermatofibroma",
|
| 6 |
-
"4": "melanoma",
|
| 7 |
-
"5": "melanocytic nevi",
|
| 8 |
-
"6": "vascular lesions"
|
| 9 |
-
|
| 10 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|