Update benchmark code
Browse files- app.py +36 -0
- constants.py +114 -0
- requirements.txt +4 -0
- styles.py +23 -0
- utils.py +149 -0
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from constants import INTRODUCTION_TEXT, METRICS_TAB_TEXT, SUBMIT_TAB_TEXT
|
4 |
+
from utils import init_repo, load_data, process_submit, get_datasets_description
|
5 |
+
from styles import LEADERBOARD_CSS
|
6 |
+
|
7 |
+
init_repo()
|
8 |
+
|
9 |
+
with gr.Blocks(css=LEADERBOARD_CSS, theme=gr.themes.Soft()) as demo:
|
10 |
+
gr.HTML(
|
11 |
+
'<img src="https://cdn.donmai.us/original/67/9c/__taihou_and_surcouf_azur_lane_and_1_more_drawn_by_yunsang__679c42b017a91a2349b25acfc7935157.png" style="width: 100%; height: auto;">'
|
12 |
+
)
|
13 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
14 |
+
|
15 |
+
with gr.Tabs():
|
16 |
+
with gr.Tab("🏅 Лидерборд"):
|
17 |
+
leaderboard_html = gr.HTML(value=load_data(), every=60)
|
18 |
+
|
19 |
+
with gr.Tab("📈 Метрики"):
|
20 |
+
gr.Markdown(METRICS_TAB_TEXT, elem_classes="markdown-text")
|
21 |
+
|
22 |
+
with gr.Tab("📊 Датасеты"):
|
23 |
+
gr.Markdown(get_datasets_description(), elem_classes="markdown-text")
|
24 |
+
|
25 |
+
with gr.Tab("✉️ Отправить результат"):
|
26 |
+
gr.Markdown(SUBMIT_TAB_TEXT, elem_classes="markdown-text")
|
27 |
+
json_input = gr.TextArea(label="JSON")
|
28 |
+
submit_btn = gr.Button("🚀 Отправить")
|
29 |
+
output_msg = gr.Textbox(label="Статус")
|
30 |
+
submit_btn.click(
|
31 |
+
process_submit,
|
32 |
+
inputs=json_input,
|
33 |
+
outputs=[leaderboard_html, output_msg],
|
34 |
+
)
|
35 |
+
|
36 |
+
demo.launch()
|
constants.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
INTRODUCTION_TEXT = """
|
4 |
+
# Русский ASR Лидерборд
|
5 |
+
Добро пожаловать в лидерборд для моделей автоматического распознавания речи (ASR) на русском языке.
|
6 |
+
Здесь вы можете сравнить производительность различных моделей по метрикам WER (Word Error Rate) и CER (Character Error Rate) на нескольких датасетах.
|
7 |
+
Лидерборд сортируется по среднему WER (⬇️ - чем ниже, тем лучше).
|
8 |
+
Наведите курсор на значение WER в колонке датасета, чтобы увидеть CER.
|
9 |
+
Все метрики указаны в процентах (%).
|
10 |
+
"""
|
11 |
+
|
12 |
+
METRICS_TAB_TEXT = """
|
13 |
+
# Метрики
|
14 |
+
Метрики рассчитываются на текстах в нижнем регистре и без пунктуации.
|
15 |
+
|
16 |
+
- **WER (Word Error Rate)**: Ошибка на уровне слов. Рассчитывается как:
|
17 |
+
|
18 |
+
$$ WER = \\frac{S + D + I}{N} $$
|
19 |
+
|
20 |
+
где S - количество замен, D - удалений, I - вставок, N - количество слов в референсе.
|
21 |
+
|
22 |
+
- **CER (Character Error Rate)**: Ошибка на уровне символов. Аналогичная формула, но для символов:
|
23 |
+
|
24 |
+
$$ CER = \\frac{S + D + I}{N} $$
|
25 |
+
|
26 |
+
где S, D, I, N - соответственно замены, удаления, вставки и количество символов в референсе.
|
27 |
+
|
28 |
+
- **Средние значения**: Простое среднее по всем датасетам.
|
29 |
+
- Все метрики нормализованы и представлены в процентах для удобства сравнения.
|
30 |
+
"""
|
31 |
+
|
32 |
+
SUBMIT_TAB_TEXT = """
|
33 |
+
# Отправить результат
|
34 |
+
Чтобы добавить вашу модель в лидерборд, отправьте JSON с результатами. Метрики должны быть в диапазоне [0, 1] (не в процентах).
|
35 |
+
|
36 |
+
Формат:
|
37 |
+
```json
|
38 |
+
{
|
39 |
+
"model_name": "MyAwesomeASRModel",
|
40 |
+
"link": "https://huggingface.co/myusername/my-asr-model",
|
41 |
+
"license": "Apache-2.0",
|
42 |
+
"metrics": {
|
43 |
+
"Russian_LibriSpeech": {
|
44 |
+
"wer": 0.1234,
|
45 |
+
"cer": 0.0567
|
46 |
+
},
|
47 |
+
"Common_Voice_Corpus_22.0": {
|
48 |
+
"wer": 0.2345,
|
49 |
+
"cer": 0.0789
|
50 |
+
},
|
51 |
+
"Tone_Webinars": {
|
52 |
+
"wer": 0.3456,
|
53 |
+
"cer": 0.0987
|
54 |
+
},
|
55 |
+
"Tone_Books": {
|
56 |
+
"wer": 0.4567,
|
57 |
+
"cer": 0.1098
|
58 |
+
},
|
59 |
+
"Tone_Speak": {
|
60 |
+
"wer": 0.5678,
|
61 |
+
"cer": 0.1209
|
62 |
+
},
|
63 |
+
"Sova_RuDevices": {
|
64 |
+
"wer": 0.6789,
|
65 |
+
"cer": 0.1310
|
66 |
+
}
|
67 |
+
}
|
68 |
+
}
|
69 |
+
В отчёте обязательно должны быть все датасеты, а именно: Russian_LibriSpeech, Common_Voice_Corpus_22.0, Tone_Webinars, Tone_Books, Tone_Speak, Sova_RuDevices.
|
70 |
+
После отправки лидерборд обновится автоматически.
|
71 |
+
"""
|
72 |
+
REPO_ID = "Vikhrmodels/russian-asr-leaderboard"
|
73 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
74 |
+
DATASETS = [
|
75 |
+
"Russian_LibriSpeech",
|
76 |
+
"Common_Voice_Corpus_22.0",
|
77 |
+
"Tone_Webinars",
|
78 |
+
"Tone_Books",
|
79 |
+
"Tone_Speak",
|
80 |
+
"Sova_RuDevices",
|
81 |
+
]
|
82 |
+
SHORT_DATASET_NAMES = ["RuLS", "CV 22.0", "Webinars", "Books", "Speak", "Sova"]
|
83 |
+
DATASET_DESCRIPTIONS = {
|
84 |
+
"RuLS": {
|
85 |
+
"full_name": "Russian_LibriSpeech",
|
86 |
+
"description": "Russian LibriSpeech (RuLS) — датасет на основе аудиокниг из общественного достояния от LibriVox, содержащий около 98 часов русской речи с транскрипциями.",
|
87 |
+
"num_rows": 1352,
|
88 |
+
},
|
89 |
+
"CV 22.0": {
|
90 |
+
"full_name": "Common_Voice_Corpus_22.0",
|
91 |
+
"description": "Common Voice — краудсорсинговый многоязычный корпус речи от Mozilla. Версия 22.0 включает данные русской речи с транскрипциями.",
|
92 |
+
"num_rows": 10244,
|
93 |
+
},
|
94 |
+
"Webinars": {
|
95 |
+
"full_name": "Tone_Webinars",
|
96 |
+
"description": "Tone_Webinars — датасет русской речи из вебинаров с транскрипциями.",
|
97 |
+
"num_rows": 21587,
|
98 |
+
},
|
99 |
+
"Books": {
|
100 |
+
"full_name": "Tone_Books",
|
101 |
+
"description": "Tone_Books — датасет русских аудиокниг с транскрипциями.",
|
102 |
+
"num_rows": 4938,
|
103 |
+
},
|
104 |
+
"Speak": {
|
105 |
+
"full_name": "Tone_Speak",
|
106 |
+
"description": "Tone_Speak — датасет синтетической русской речи с транскрипциями.",
|
107 |
+
"num_rows": 700,
|
108 |
+
},
|
109 |
+
"Sova": {
|
110 |
+
"full_name": "Sova_RuDevices",
|
111 |
+
"description": "SOVA RuDevices — акустический корпус примерно 100 часов 16kHz живой русской речи, записанной ��а устройствах, с ручной транскрипцией.",
|
112 |
+
"num_rows": 5799,
|
113 |
+
},
|
114 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pandas
|
3 |
+
huggingface_hub
|
4 |
+
datasets
|
styles.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LEADERBOARD_CSS = """
|
2 |
+
.leaderboard-wrapper { overflow-x: auto; -ms-overflow-style: none; scrollbar-width: none; margin-bottom: 40px; }
|
3 |
+
.leaderboard-wrapper::-webkit-scrollbar { display: none; }
|
4 |
+
.leaderboard-table { min-width: 100%; }
|
5 |
+
.leaderboard-table table { border-collapse: collapse; width: 100%; }
|
6 |
+
.leaderboard-table th, .leaderboard-table td { border: 1px solid #ddd; padding: 8px; text-align: center; }
|
7 |
+
.leaderboard-table th { background-color: #f2f2f2; font-weight: bold; }
|
8 |
+
.leaderboard-table tr:nth-child(even) { background-color: #f9f9f9; }
|
9 |
+
.leaderboard-table tr:hover { background-color: #f1f1f1; }
|
10 |
+
.leaderboard-table a { color: #0366d6; text-decoration: none; }
|
11 |
+
.leaderboard-table a:hover { text-decoration: underline; }
|
12 |
+
.leaderboard-table span { cursor: pointer; }
|
13 |
+
/* Dark mode */
|
14 |
+
.dark .leaderboard-table th, .dark .leaderboard-table td { border-color: #30363d; color: #e0e0e0; }
|
15 |
+
.dark .leaderboard-table th { background-color: #21262d; }
|
16 |
+
.dark .leaderboard-table tr:nth-child(even) { background-color: #161b22; }
|
17 |
+
.dark .leaderboard-table tr:hover { background-color: #0d1117; }
|
18 |
+
.dark .leaderboard-table a { color: #58a6ff; }
|
19 |
+
/* Other CSS */
|
20 |
+
.gradio-container { max-width: 1400px; margin: auto; padding: 20px; }
|
21 |
+
.markdown-text { color: #24292e; padding: 15px; border-radius: 6px; background-color: #f6f8fa; margin-bottom: 20px; }
|
22 |
+
.dark .markdown-text { color: #c9d1d9; background-color: #161b22; }
|
23 |
+
"""
|
utils.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import pandas as pd
|
3 |
+
from statistics import mean
|
4 |
+
from huggingface_hub import HfApi, create_repo
|
5 |
+
from datasets import load_dataset, Dataset
|
6 |
+
from datasets.data_files import EmptyDatasetError
|
7 |
+
|
8 |
+
from constants import (
|
9 |
+
REPO_ID,
|
10 |
+
HF_TOKEN,
|
11 |
+
DATASETS,
|
12 |
+
SHORT_DATASET_NAMES,
|
13 |
+
DATASET_DESCRIPTIONS,
|
14 |
+
)
|
15 |
+
|
16 |
+
api = HfApi(token=HF_TOKEN)
|
17 |
+
|
18 |
+
|
19 |
+
def init_repo():
|
20 |
+
try:
|
21 |
+
api.repo_info(REPO_ID, repo_type="dataset")
|
22 |
+
except:
|
23 |
+
create_repo(REPO_ID, repo_type="dataset", private=True, token=HF_TOKEN)
|
24 |
+
|
25 |
+
|
26 |
+
def load_data():
|
27 |
+
columns = (
|
28 |
+
["model_name", "link", "license", "overall_wer", "overall_cer"]
|
29 |
+
+ [f"wer_{ds}" for ds in DATASETS]
|
30 |
+
+ [f"cer_{ds}" for ds in DATASETS]
|
31 |
+
)
|
32 |
+
try:
|
33 |
+
dataset = load_dataset(REPO_ID, token=HF_TOKEN)
|
34 |
+
df = dataset["train"].to_pandas()
|
35 |
+
except EmptyDatasetError:
|
36 |
+
df = pd.DataFrame(columns=columns)
|
37 |
+
|
38 |
+
if not df.empty:
|
39 |
+
df = df.sort_values("overall_wer").reset_index(drop=True)
|
40 |
+
df.insert(0, "rank", df.index + 1)
|
41 |
+
|
42 |
+
df["overall_wer"] = (df["overall_wer"] * 100).round(2).apply(lambda x: f"{x}")
|
43 |
+
df["overall_cer"] = (df["overall_cer"] * 100).round(2).apply(lambda x: f"{x}")
|
44 |
+
for ds in DATASETS:
|
45 |
+
df[f"wer_{ds}"] = (df[f"wer_{ds}"] * 100).round(2)
|
46 |
+
df[f"cer_{ds}"] = (df[f"cer_{ds}"] * 100).round(2)
|
47 |
+
|
48 |
+
for short_ds, ds in zip(SHORT_DATASET_NAMES, DATASETS):
|
49 |
+
df[short_ds] = df.apply(
|
50 |
+
lambda row: f'<span title="CER: {row[f"cer_{ds}"]:.2f}" style="cursor: help;">{row[f"wer_{ds}"]:.2f}</span>',
|
51 |
+
axis=1,
|
52 |
+
)
|
53 |
+
df = df.drop(columns=[f"wer_{ds}", f"cer_{ds}"])
|
54 |
+
|
55 |
+
df["model_name"] = df.apply(
|
56 |
+
lambda row: f'<a href="{row["link"]}" target="_blank">{row["model_name"]}</a>',
|
57 |
+
axis=1,
|
58 |
+
)
|
59 |
+
|
60 |
+
df = df.drop(columns=["link"])
|
61 |
+
|
62 |
+
df["license"] = df["license"].apply(
|
63 |
+
lambda x: "Открытая"
|
64 |
+
if any(
|
65 |
+
term in x.lower() for term in ["mit", "apache", "bsd", "gpl", "open"]
|
66 |
+
)
|
67 |
+
else "Закрытая"
|
68 |
+
)
|
69 |
+
|
70 |
+
df.rename(
|
71 |
+
columns={
|
72 |
+
"overall_wer": "Средний WER ⬇️",
|
73 |
+
"overall_cer": "Средний CER ⬇️",
|
74 |
+
"license": "Тип модели",
|
75 |
+
"model_name": "Модель",
|
76 |
+
"rank": "Ранг",
|
77 |
+
},
|
78 |
+
inplace=True,
|
79 |
+
)
|
80 |
+
|
81 |
+
table_html = df.to_html(escape=False, index=False)
|
82 |
+
return f'<div class="leaderboard-wrapper"><div class="leaderboard-table">{table_html}</div></div>'
|
83 |
+
else:
|
84 |
+
return (
|
85 |
+
'<div class="leaderboard-wrapper"><div class="leaderboard-table"><table><thead><tr><th>Ранг</th><th>Модель</th><th>Тип модели</th><th>Средний WER ⬇️</th><th>Средний CER ⬇️</th>'
|
86 |
+
+ "".join(f"<th>{short}</th>" for short in SHORT_DATASET_NAMES)
|
87 |
+
+ "</tr></thead><tbody></tbody></table></div></div>"
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
def process_submit(json_str):
|
92 |
+
columns = (
|
93 |
+
["model_name", "link", "license", "overall_wer", "overall_cer"]
|
94 |
+
+ [f"wer_{ds}" for ds in DATASETS]
|
95 |
+
+ [f"cer_{ds}" for ds in DATASETS]
|
96 |
+
)
|
97 |
+
try:
|
98 |
+
data = json.loads(json_str)
|
99 |
+
|
100 |
+
required_keys = ["model_name", "link", "license", "metrics"]
|
101 |
+
if not all(key in data for key in required_keys):
|
102 |
+
raise ValueError(
|
103 |
+
"Неверная структура JSON. Требуемые поля: model_name, link, license, metrics"
|
104 |
+
)
|
105 |
+
|
106 |
+
metrics = data["metrics"]
|
107 |
+
if set(metrics.keys()) != set(DATASETS):
|
108 |
+
raise ValueError(
|
109 |
+
f"Метрики должны быть для всех датасетов: {', '.join(DATASETS)}"
|
110 |
+
)
|
111 |
+
|
112 |
+
wers = []
|
113 |
+
cers = []
|
114 |
+
row = {
|
115 |
+
"model_name": data["model_name"],
|
116 |
+
"link": data["link"],
|
117 |
+
"license": data["license"],
|
118 |
+
}
|
119 |
+
for ds in DATASETS:
|
120 |
+
if "wer" not in metrics[ds] or "cer" not in metrics[ds]:
|
121 |
+
raise ValueError(f"Для {ds} требуются wer и cer")
|
122 |
+
row[f"wer_{ds}"] = metrics[ds]["wer"]
|
123 |
+
row[f"cer_{ds}"] = metrics[ds]["cer"]
|
124 |
+
wers.append(metrics[ds]["wer"])
|
125 |
+
cers.append(metrics[ds]["cer"])
|
126 |
+
|
127 |
+
row["overall_wer"] = mean(wers)
|
128 |
+
row["overall_cer"] = mean(cers)
|
129 |
+
|
130 |
+
try:
|
131 |
+
dataset = load_dataset(REPO_ID, token=HF_TOKEN)
|
132 |
+
df = dataset["train"].to_pandas()
|
133 |
+
except EmptyDatasetError:
|
134 |
+
df = pd.DataFrame(columns=columns)
|
135 |
+
new_df = pd.concat([df, pd.DataFrame([row])], ignore_index=True)
|
136 |
+
new_dataset = Dataset.from_pandas(new_df)
|
137 |
+
new_dataset.push_to_hub(REPO_ID, token=HF_TOKEN)
|
138 |
+
|
139 |
+
updated_html = load_data()
|
140 |
+
return updated_html, "Успешно добавлен��!"
|
141 |
+
except Exception as e:
|
142 |
+
return None, f"Ошибка: {str(e)}"
|
143 |
+
|
144 |
+
|
145 |
+
def get_datasets_description():
|
146 |
+
desc = "# Описание датасетов\n\n"
|
147 |
+
for short_ds, info in DATASET_DESCRIPTIONS.items():
|
148 |
+
desc += f"### {short_ds} ({info['full_name']})\n{info['description']}\n- Количество записей: {info['num_rows']}\n\n"
|
149 |
+
return desc
|