import os os.system("pip install diffusers torch transformers accelerate gradio") import gradio as gr from diffusers import StableDiffusionPipeline # Load the Stable Diffusion model model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") def generate_image(prompt): # Generate an image based on the prompt image = model(prompt).images[0] return image # Create a Gradio interface interface = gr.Interface( fn=generate_image, inputs="text", outputs="image", title="AI Image Generator", description="Enter a prompt to generate an image using Stable Diffusion." ) # Launch the interface if __name__ == "__main__": interface.launch() model = StableDiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V4.0") import torch from diffusers import StableDiffusionPipeline model = StableDiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V4.0").to("cuda") model.unet = torch.compile(model.unet) # Speeds up inference def generate_image(prompt): image = model(prompt).images[0] return image