from fastapi import FastAPI, HTTPException from pydantic import BaseModel import torch from transformers import RobertaTokenizer, RobertaForSequenceClassification from torch.nn.functional import softmax import re app = FastAPI( title="Contact Information Detection API", description="API for detecting contact information in text", version="1.0.0", docs_url="/" ) class ContactDetector: def __init__(self): cache_dir = "/app/model_cache" self.tokenizer = RobertaTokenizer.from_pretrained('roberta-base', cache_dir=cache_dir) self.model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2, cache_dir=cache_dir) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model.to(self.device) self.model.eval() def detect_contact_info(self, text): inputs = self.tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(self.device) with torch.no_grad(): outputs = self.model(**inputs) probabilities = softmax(outputs.logits, dim=1) return probabilities[0][1].item() # Probability of contact info def is_contact_info(self, text, threshold=0.45): return self.detect_contact_info(text) > threshold detector = ContactDetector() class TextInput(BaseModel): text: str def check_regex_patterns(text): patterns = [ r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', # Email r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', # Phone number r'\b\d{5}(?:[-\s]\d{4})?\b', # ZIP code r'\b\d+\s+[\w\s]+(?:street|st|avenue|ave|road|rd|highway|hwy|square|sq|trail|trl|drive|dr|court|ct|park|parkway|pkwy|circle|cir|boulevard|blvd)\b\s*(?:[a-z]+\s*\d{1,3})?(?:,\s*(?:apt|bldg|dept|fl|hngr|lot|pier|rm|ste|unit|#)\s*[a-z0-9-]+)?(?:,\s*[a-z]+\s*[a-z]{2}\s*\d{5}(?:-\d{4})?)?', # Street address r'(?:http|https)://(?:www\.)?[a-zA-Z0-9-]+\.[a-zA-Z]{2,}(?:/[^\s]*)?' # Website URL ] for pattern in patterns: if re.search(pattern, text, re.IGNORECASE): return True return False @app.post("/detect_contact", summary="Detect contact information in text") async def detect_contact(input: TextInput): try: # First, check with regex patterns if check_regex_patterns(input.text): return { "text": input.text, "contact_probability": 1.0, "is_contact_info": True, "method": "regex" } # If no regex patterns match, use the model probability = detector.detect_contact_info(input.text) is_contact = detector.is_contact_info(input.text) return { "text": input.text, "contact_probability": probability, "is_contact_info": is_contact, "method": "model" } except Exception as e: raise HTTPException(status_code=500, detail=str(e))