parth parekh
commited on
Commit
·
ab99a02
1
Parent(s):
ddaad57
added working batch processing endpoint
Browse files- __pycache__/app.cpython-312.pyc +0 -0
- __pycache__/predictor.cpython-312.pyc +0 -0
- app.py +7 -7
- predictor.py +5 -8
- test.py +23 -14
__pycache__/app.cpython-312.pyc
ADDED
|
Binary file (4.43 kB). View file
|
|
|
__pycache__/predictor.cpython-312.pyc
CHANGED
|
Binary files a/__pycache__/predictor.cpython-312.pyc and b/__pycache__/predictor.cpython-312.pyc differ
|
|
|
app.py
CHANGED
|
@@ -59,23 +59,23 @@ async def detect_contact(input: TextInput):
|
|
| 59 |
except Exception as e:
|
| 60 |
raise HTTPException(status_code=500, detail=str(e))
|
| 61 |
|
| 62 |
-
|
| 63 |
@app.post("/batch_detect_contact", summary="Detect contact information in batch of texts")
|
| 64 |
async def batch_detect_contact(inputs: BatchTextInput):
|
| 65 |
try:
|
| 66 |
# Preprocess all texts
|
| 67 |
preprocessed_texts = [preprocess_text(text) for text in inputs.texts]
|
| 68 |
-
|
| 69 |
# First, use regex to check patterns
|
| 70 |
regex_results = [check_regex_patterns(text) for text in preprocessed_texts]
|
| 71 |
-
|
|
|
|
| 72 |
# For texts where regex doesn't detect anything, use the model
|
| 73 |
texts_for_model = [text for text, regex_match in zip(preprocessed_texts, regex_results) if not regex_match]
|
| 74 |
if texts_for_model:
|
| 75 |
model_results = batch_predict(texts_for_model)
|
| 76 |
else:
|
| 77 |
model_results = []
|
| 78 |
-
|
| 79 |
# Prepare final results
|
| 80 |
results = []
|
| 81 |
model_idx = 0
|
|
@@ -90,11 +90,11 @@ async def batch_detect_contact(inputs: BatchTextInput):
|
|
| 90 |
is_contact = model_results[model_idx]
|
| 91 |
results.append({
|
| 92 |
"text": inputs.texts[i],
|
| 93 |
-
"is_contact_info": is_contact
|
| 94 |
"method": "model"
|
| 95 |
})
|
| 96 |
model_idx += 1
|
| 97 |
-
|
| 98 |
return results
|
| 99 |
except Exception as e:
|
| 100 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
| 59 |
except Exception as e:
|
| 60 |
raise HTTPException(status_code=500, detail=str(e))
|
| 61 |
|
|
|
|
| 62 |
@app.post("/batch_detect_contact", summary="Detect contact information in batch of texts")
|
| 63 |
async def batch_detect_contact(inputs: BatchTextInput):
|
| 64 |
try:
|
| 65 |
# Preprocess all texts
|
| 66 |
preprocessed_texts = [preprocess_text(text) for text in inputs.texts]
|
| 67 |
+
|
| 68 |
# First, use regex to check patterns
|
| 69 |
regex_results = [check_regex_patterns(text) for text in preprocessed_texts]
|
| 70 |
+
|
| 71 |
+
|
| 72 |
# For texts where regex doesn't detect anything, use the model
|
| 73 |
texts_for_model = [text for text, regex_match in zip(preprocessed_texts, regex_results) if not regex_match]
|
| 74 |
if texts_for_model:
|
| 75 |
model_results = batch_predict(texts_for_model)
|
| 76 |
else:
|
| 77 |
model_results = []
|
| 78 |
+
|
| 79 |
# Prepare final results
|
| 80 |
results = []
|
| 81 |
model_idx = 0
|
|
|
|
| 90 |
is_contact = model_results[model_idx]
|
| 91 |
results.append({
|
| 92 |
"text": inputs.texts[i],
|
| 93 |
+
"is_contact_info": bool(is_contact), # Convert numpy bool
|
| 94 |
"method": "model"
|
| 95 |
})
|
| 96 |
model_idx += 1
|
| 97 |
+
|
| 98 |
return results
|
| 99 |
except Exception as e:
|
| 100 |
+
raise HTTPException(status_code=500, detail=str(e))
|
predictor.py
CHANGED
|
@@ -105,16 +105,13 @@ def predict(text):
|
|
| 105 |
return torch.argmax(outputs, dim=1).item()
|
| 106 |
|
| 107 |
def batch_predict(texts):
|
| 108 |
-
with torch.inference_mode(): # Use inference mode for performance
|
| 109 |
-
# Tokenize and convert
|
| 110 |
inputs = [torch.tensor(text_pipeline(text)) for text in texts]
|
| 111 |
|
| 112 |
-
# Pad all sequences to the
|
| 113 |
-
max_len = max(
|
| 114 |
-
padded_inputs = torch.stack([
|
| 115 |
-
torch.cat([seq, torch.zeros(max_len - len(seq), dtype=torch.long)]) if len(seq) < max_len else seq
|
| 116 |
-
for seq in inputs
|
| 117 |
-
]).to(device)
|
| 118 |
|
| 119 |
# Pass the batch through the scripted model
|
| 120 |
outputs = scripted_model(padded_inputs)
|
|
|
|
| 105 |
return torch.argmax(outputs, dim=1).item()
|
| 106 |
|
| 107 |
def batch_predict(texts):
|
| 108 |
+
with torch.inference_mode(): # Use inference mode for better performance
|
| 109 |
+
# Tokenize and convert to tensors
|
| 110 |
inputs = [torch.tensor(text_pipeline(text)) for text in texts]
|
| 111 |
|
| 112 |
+
# Pad all sequences to the length of the longest one in the batch
|
| 113 |
+
max_len = max(len(seq) for seq in inputs)
|
| 114 |
+
padded_inputs = torch.stack([torch.cat([seq, torch.zeros(max_len - len(seq), dtype=torch.long)]) for seq in inputs]).to(device)
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
# Pass the batch through the scripted model
|
| 117 |
outputs = scripted_model(padded_inputs)
|
test.py
CHANGED
|
@@ -104,47 +104,56 @@ test_texts = [
|
|
| 104 |
|
| 105 |
]
|
| 106 |
import time
|
|
|
|
|
|
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
async def process_text(session, text):
|
| 111 |
-
payload = {"text": text}
|
| 112 |
headers = {"Content-Type": "application/json"}
|
| 113 |
|
| 114 |
start_time = time.time()
|
| 115 |
async with session.post(url, data=json.dumps(payload), headers=headers) as response:
|
| 116 |
if response.status == 200:
|
| 117 |
-
|
| 118 |
end_time = time.time()
|
| 119 |
-
result
|
| 120 |
-
|
|
|
|
| 121 |
else:
|
| 122 |
-
print(f"Error for
|
| 123 |
print(f"Status code: {response.status}")
|
| 124 |
print(f"Response: {await response.text()}")
|
| 125 |
return None
|
| 126 |
|
| 127 |
async def main():
|
|
|
|
|
|
|
|
|
|
| 128 |
async with aiohttp.ClientSession() as session:
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
correct_predictions = 0
|
| 133 |
total_predictions = len(results)
|
| 134 |
total_response_time = 0
|
| 135 |
|
| 136 |
-
for
|
| 137 |
if result:
|
| 138 |
print(f"Text: {result['text']}")
|
| 139 |
-
print(f"Contact Probability: {result['contact_probability']:.4f}")
|
| 140 |
print(f"Is Contact Info: {result['is_contact_info']}")
|
|
|
|
| 141 |
print(f"Response Time: {result['response_time']:.4f} seconds")
|
| 142 |
print("---")
|
| 143 |
-
|
| 144 |
# Assuming all texts in test_texts are actually contact information
|
| 145 |
if result['is_contact_info']:
|
| 146 |
correct_predictions += 1
|
| 147 |
-
|
| 148 |
total_response_time += result['response_time']
|
| 149 |
|
| 150 |
accuracy = correct_predictions / total_predictions
|
|
|
|
| 104 |
|
| 105 |
]
|
| 106 |
import time
|
| 107 |
+
# url = "https://vidhitmakvana1-contact-sharing-recognizer-api.hf.space/batch_detect_contact"
|
| 108 |
+
url = "http://localhost:8000/batch_detect_contact"
|
| 109 |
|
| 110 |
+
async def process_batch(session, texts):
|
| 111 |
+
payload = {"texts": texts}
|
|
|
|
|
|
|
| 112 |
headers = {"Content-Type": "application/json"}
|
| 113 |
|
| 114 |
start_time = time.time()
|
| 115 |
async with session.post(url, data=json.dumps(payload), headers=headers) as response:
|
| 116 |
if response.status == 200:
|
| 117 |
+
results = await response.json()
|
| 118 |
end_time = time.time()
|
| 119 |
+
for result in results:
|
| 120 |
+
result['response_time'] = (end_time - start_time) / len(texts)
|
| 121 |
+
return results
|
| 122 |
else:
|
| 123 |
+
print(f"Error for batch")
|
| 124 |
print(f"Status code: {response.status}")
|
| 125 |
print(f"Response: {await response.text()}")
|
| 126 |
return None
|
| 127 |
|
| 128 |
async def main():
|
| 129 |
+
# Inflate test_texts
|
| 130 |
+
inflated_texts = test_texts * 100 # Multiply the test set by 10
|
| 131 |
+
|
| 132 |
async with aiohttp.ClientSession() as session:
|
| 133 |
+
batch_size = 1000
|
| 134 |
+
batches = [inflated_texts[i:i + batch_size] for i in range(0, len(inflated_texts), batch_size)]
|
| 135 |
+
|
| 136 |
+
tasks = [process_batch(session, batch) for batch in batches]
|
| 137 |
+
all_results = await tqdm.gather(*tasks)
|
| 138 |
+
|
| 139 |
+
results = [item for sublist in all_results for item in sublist if sublist]
|
| 140 |
|
| 141 |
correct_predictions = 0
|
| 142 |
total_predictions = len(results)
|
| 143 |
total_response_time = 0
|
| 144 |
|
| 145 |
+
for result in results:
|
| 146 |
if result:
|
| 147 |
print(f"Text: {result['text']}")
|
|
|
|
| 148 |
print(f"Is Contact Info: {result['is_contact_info']}")
|
| 149 |
+
print(f"Method: {result['method']}")
|
| 150 |
print(f"Response Time: {result['response_time']:.4f} seconds")
|
| 151 |
print("---")
|
| 152 |
+
|
| 153 |
# Assuming all texts in test_texts are actually contact information
|
| 154 |
if result['is_contact_info']:
|
| 155 |
correct_predictions += 1
|
| 156 |
+
|
| 157 |
total_response_time += result['response_time']
|
| 158 |
|
| 159 |
accuracy = correct_predictions / total_predictions
|