parth parekh
commited on
Commit
·
ab99a02
1
Parent(s):
ddaad57
added working batch processing endpoint
Browse files- __pycache__/app.cpython-312.pyc +0 -0
- __pycache__/predictor.cpython-312.pyc +0 -0
- app.py +7 -7
- predictor.py +5 -8
- test.py +23 -14
__pycache__/app.cpython-312.pyc
ADDED
Binary file (4.43 kB). View file
|
|
__pycache__/predictor.cpython-312.pyc
CHANGED
Binary files a/__pycache__/predictor.cpython-312.pyc and b/__pycache__/predictor.cpython-312.pyc differ
|
|
app.py
CHANGED
@@ -59,23 +59,23 @@ async def detect_contact(input: TextInput):
|
|
59 |
except Exception as e:
|
60 |
raise HTTPException(status_code=500, detail=str(e))
|
61 |
|
62 |
-
|
63 |
@app.post("/batch_detect_contact", summary="Detect contact information in batch of texts")
|
64 |
async def batch_detect_contact(inputs: BatchTextInput):
|
65 |
try:
|
66 |
# Preprocess all texts
|
67 |
preprocessed_texts = [preprocess_text(text) for text in inputs.texts]
|
68 |
-
|
69 |
# First, use regex to check patterns
|
70 |
regex_results = [check_regex_patterns(text) for text in preprocessed_texts]
|
71 |
-
|
|
|
72 |
# For texts where regex doesn't detect anything, use the model
|
73 |
texts_for_model = [text for text, regex_match in zip(preprocessed_texts, regex_results) if not regex_match]
|
74 |
if texts_for_model:
|
75 |
model_results = batch_predict(texts_for_model)
|
76 |
else:
|
77 |
model_results = []
|
78 |
-
|
79 |
# Prepare final results
|
80 |
results = []
|
81 |
model_idx = 0
|
@@ -90,11 +90,11 @@ async def batch_detect_contact(inputs: BatchTextInput):
|
|
90 |
is_contact = model_results[model_idx]
|
91 |
results.append({
|
92 |
"text": inputs.texts[i],
|
93 |
-
"is_contact_info": is_contact
|
94 |
"method": "model"
|
95 |
})
|
96 |
model_idx += 1
|
97 |
-
|
98 |
return results
|
99 |
except Exception as e:
|
100 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
59 |
except Exception as e:
|
60 |
raise HTTPException(status_code=500, detail=str(e))
|
61 |
|
|
|
62 |
@app.post("/batch_detect_contact", summary="Detect contact information in batch of texts")
|
63 |
async def batch_detect_contact(inputs: BatchTextInput):
|
64 |
try:
|
65 |
# Preprocess all texts
|
66 |
preprocessed_texts = [preprocess_text(text) for text in inputs.texts]
|
67 |
+
|
68 |
# First, use regex to check patterns
|
69 |
regex_results = [check_regex_patterns(text) for text in preprocessed_texts]
|
70 |
+
|
71 |
+
|
72 |
# For texts where regex doesn't detect anything, use the model
|
73 |
texts_for_model = [text for text, regex_match in zip(preprocessed_texts, regex_results) if not regex_match]
|
74 |
if texts_for_model:
|
75 |
model_results = batch_predict(texts_for_model)
|
76 |
else:
|
77 |
model_results = []
|
78 |
+
|
79 |
# Prepare final results
|
80 |
results = []
|
81 |
model_idx = 0
|
|
|
90 |
is_contact = model_results[model_idx]
|
91 |
results.append({
|
92 |
"text": inputs.texts[i],
|
93 |
+
"is_contact_info": bool(is_contact), # Convert numpy bool
|
94 |
"method": "model"
|
95 |
})
|
96 |
model_idx += 1
|
97 |
+
|
98 |
return results
|
99 |
except Exception as e:
|
100 |
+
raise HTTPException(status_code=500, detail=str(e))
|
predictor.py
CHANGED
@@ -105,16 +105,13 @@ def predict(text):
|
|
105 |
return torch.argmax(outputs, dim=1).item()
|
106 |
|
107 |
def batch_predict(texts):
|
108 |
-
with torch.inference_mode(): # Use inference mode for performance
|
109 |
-
# Tokenize and convert
|
110 |
inputs = [torch.tensor(text_pipeline(text)) for text in texts]
|
111 |
|
112 |
-
# Pad all sequences to the
|
113 |
-
max_len = max(
|
114 |
-
padded_inputs = torch.stack([
|
115 |
-
torch.cat([seq, torch.zeros(max_len - len(seq), dtype=torch.long)]) if len(seq) < max_len else seq
|
116 |
-
for seq in inputs
|
117 |
-
]).to(device)
|
118 |
|
119 |
# Pass the batch through the scripted model
|
120 |
outputs = scripted_model(padded_inputs)
|
|
|
105 |
return torch.argmax(outputs, dim=1).item()
|
106 |
|
107 |
def batch_predict(texts):
|
108 |
+
with torch.inference_mode(): # Use inference mode for better performance
|
109 |
+
# Tokenize and convert to tensors
|
110 |
inputs = [torch.tensor(text_pipeline(text)) for text in texts]
|
111 |
|
112 |
+
# Pad all sequences to the length of the longest one in the batch
|
113 |
+
max_len = max(len(seq) for seq in inputs)
|
114 |
+
padded_inputs = torch.stack([torch.cat([seq, torch.zeros(max_len - len(seq), dtype=torch.long)]) for seq in inputs]).to(device)
|
|
|
|
|
|
|
115 |
|
116 |
# Pass the batch through the scripted model
|
117 |
outputs = scripted_model(padded_inputs)
|
test.py
CHANGED
@@ -104,47 +104,56 @@ test_texts = [
|
|
104 |
|
105 |
]
|
106 |
import time
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
async def process_text(session, text):
|
111 |
-
payload = {"text": text}
|
112 |
headers = {"Content-Type": "application/json"}
|
113 |
|
114 |
start_time = time.time()
|
115 |
async with session.post(url, data=json.dumps(payload), headers=headers) as response:
|
116 |
if response.status == 200:
|
117 |
-
|
118 |
end_time = time.time()
|
119 |
-
result
|
120 |
-
|
|
|
121 |
else:
|
122 |
-
print(f"Error for
|
123 |
print(f"Status code: {response.status}")
|
124 |
print(f"Response: {await response.text()}")
|
125 |
return None
|
126 |
|
127 |
async def main():
|
|
|
|
|
|
|
128 |
async with aiohttp.ClientSession() as session:
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
correct_predictions = 0
|
133 |
total_predictions = len(results)
|
134 |
total_response_time = 0
|
135 |
|
136 |
-
for
|
137 |
if result:
|
138 |
print(f"Text: {result['text']}")
|
139 |
-
print(f"Contact Probability: {result['contact_probability']:.4f}")
|
140 |
print(f"Is Contact Info: {result['is_contact_info']}")
|
|
|
141 |
print(f"Response Time: {result['response_time']:.4f} seconds")
|
142 |
print("---")
|
143 |
-
|
144 |
# Assuming all texts in test_texts are actually contact information
|
145 |
if result['is_contact_info']:
|
146 |
correct_predictions += 1
|
147 |
-
|
148 |
total_response_time += result['response_time']
|
149 |
|
150 |
accuracy = correct_predictions / total_predictions
|
|
|
104 |
|
105 |
]
|
106 |
import time
|
107 |
+
# url = "https://vidhitmakvana1-contact-sharing-recognizer-api.hf.space/batch_detect_contact"
|
108 |
+
url = "http://localhost:8000/batch_detect_contact"
|
109 |
|
110 |
+
async def process_batch(session, texts):
|
111 |
+
payload = {"texts": texts}
|
|
|
|
|
112 |
headers = {"Content-Type": "application/json"}
|
113 |
|
114 |
start_time = time.time()
|
115 |
async with session.post(url, data=json.dumps(payload), headers=headers) as response:
|
116 |
if response.status == 200:
|
117 |
+
results = await response.json()
|
118 |
end_time = time.time()
|
119 |
+
for result in results:
|
120 |
+
result['response_time'] = (end_time - start_time) / len(texts)
|
121 |
+
return results
|
122 |
else:
|
123 |
+
print(f"Error for batch")
|
124 |
print(f"Status code: {response.status}")
|
125 |
print(f"Response: {await response.text()}")
|
126 |
return None
|
127 |
|
128 |
async def main():
|
129 |
+
# Inflate test_texts
|
130 |
+
inflated_texts = test_texts * 100 # Multiply the test set by 10
|
131 |
+
|
132 |
async with aiohttp.ClientSession() as session:
|
133 |
+
batch_size = 1000
|
134 |
+
batches = [inflated_texts[i:i + batch_size] for i in range(0, len(inflated_texts), batch_size)]
|
135 |
+
|
136 |
+
tasks = [process_batch(session, batch) for batch in batches]
|
137 |
+
all_results = await tqdm.gather(*tasks)
|
138 |
+
|
139 |
+
results = [item for sublist in all_results for item in sublist if sublist]
|
140 |
|
141 |
correct_predictions = 0
|
142 |
total_predictions = len(results)
|
143 |
total_response_time = 0
|
144 |
|
145 |
+
for result in results:
|
146 |
if result:
|
147 |
print(f"Text: {result['text']}")
|
|
|
148 |
print(f"Is Contact Info: {result['is_contact_info']}")
|
149 |
+
print(f"Method: {result['method']}")
|
150 |
print(f"Response Time: {result['response_time']:.4f} seconds")
|
151 |
print("---")
|
152 |
+
|
153 |
# Assuming all texts in test_texts are actually contact information
|
154 |
if result['is_contact_info']:
|
155 |
correct_predictions += 1
|
156 |
+
|
157 |
total_response_time += result['response_time']
|
158 |
|
159 |
accuracy = correct_predictions / total_predictions
|