File size: 7,365 Bytes
9a43209
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# -*- coding: utf-8 -*-
"""ProyectoAvanzado1.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/1R5pOFRcOn9faAiaFmIL6GcuWweWYGswX
"""

import os
import pickle
import numpy as np
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from sklearn import preprocessing
import streamlit as st
import tensorflow as tf
import numpy as np
import cv2
from PIL import Image
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

# Función para cargar datos desde archivos .p
def load_pickle(file_path):
    with open(file_path, 'rb') as file:
        data = pickle.load(file)
    return data

# Cargar datos de entrenamiento, validación y prueba
train_data = load_pickle(os.path.join("/Users/victorg/Documents/DataScience/ProjectoAvanzado/CSV/train.p"))
val_data = load_pickle(os.path.join("/Users/victorg/Documents/DataScience/ProjectoAvanzado/CSV/valid.p"))
test_data = load_pickle(os.path.join("/Users/victorg/Documents/DataScience/ProjectoAvanzado/CSV/test.p"))

# Separar imágenes y etiquetas
train_images, train_labels = train_data['features'], train_data['labels']
val_images, val_labels = val_data['features'], val_data['labels']
test_images, test_labels = test_data['features'], test_data['labels']

# Preprocesar datos
def preprocess_data(images, labels):
    images = images.astype('float32') / 255.0
    labels = to_categorical(labels, num_classes=43)
    return images, labels

train_images, train_labels = preprocess_data(train_images, train_labels)
val_images, val_labels = preprocess_data(val_images, val_labels)
test_images, test_labels = preprocess_data(test_images, test_labels)


# Convertir etiquetas a DataFrame para visualización
train_df = pd.DataFrame({"label": train_labels.argmax(axis=1)})

# Conteo de imágenes por clase
plt.figure(figsize=(10, 6))
sns.countplot(x=train_df['label'])
plt.title("Conteo de Imágenes por Clase")
plt.xlabel("Clase")
plt.ylabel("Conteo")
plt.show()

# Visualización 2: Ejemplos de imágenes por clase
fig, axes = plt.subplots(5, 5, figsize=(15, 15))
axes = axes.ravel()
for i in range(25):
    axes[i].imshow(train_images[i])
    axes[i].set_title(f"Clase: {train_labels[i].argmax()}")
    axes[i].axis('off')
plt.subplots_adjust(hspace=0.5)
plt.show()

# Visualización 3: Muestra aleatoria de imágenes
fig, axes = plt.subplots(3, 3, figsize=(12, 12))
axes = axes.ravel()
for i in range(9):
    idx = np.random.randint(0, len(train_images))
    axes[i].imshow(train_images[idx])
    axes[i].set_title(f"Clase: {train_labels[idx].argmax()}")
    axes[i].axis('off')
plt.subplots_adjust(hspace=0.5)
plt.show()



# Definir la arquitectura de la CNN
model = Sequential([
    Conv2D(32, (3, 3), activation="relu", input_shape=(32, 32, 3)),
    MaxPooling2D((2, 2)),
    Conv2D(64, (3, 3), activation="relu"),
    MaxPooling2D((2, 2)),
    Conv2D(128, (3, 3), activation="relu"),
    MaxPooling2D((2, 2)),
    Flatten(),
    Dense(215, activation="relu"),
    Dropout(0.5),
    Dense(43, activation="softmax")
])

# Compilar el modelo
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])

# Verificar si el modelo ya está guardado
model_path = "traffic_sign_classifier.h5"
if os.path.exists(model_path):
    model = tf.keras.models.load_model(model_path)
else:
    model.fit(train_images, train_labels, epochs=10, validation_data=(val_images, val_labels))
    model.save(model_path)

# Evaluar el modelo en datos de prueba
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f"Test Accuracy: {test_acc:.2f}")




# Cargar el modelo
model = tf.keras.models.load_model("traffic_sign_classifier.h5")

# Diccionario de clases de señales de tráfico
classes = {
    0: 'Speed limit (20km/h)',
    1: 'Speed limit (30km/h)',
    2: 'Speed limit (50km/h)',
    3: 'Speed limit (60km/h)',
    4: 'Speed limit (70km/h)',
    5: 'Speed limit (80km/h)',
    6: 'End of speed limit (80km/h)',
    7: 'Speed limit (100km/h)',
    8: 'Speed limit (120km/h)',
    9: 'No passing',
    10: 'No passing for vehicles over 3.5 metric tons',
    11: 'Right-of-way at the next intersection',
    12: 'Priority road',
    13: 'Yield',
    14: 'Stop',
    15: 'No vehicles',
    16: 'Vehicles over 3.5 metric tons prohibited',
    17: 'No entry',
    18: 'General caution',
    19: 'Dangerous curve to the left',
    20: 'Dangerous curve to the right',
    21: 'Double curve',
    22: 'Bumpy road',
    23: 'Slippery road',
    24: 'Road narrows on the right',
    25: 'Road work',
    26: 'Traffic signals',
    27: 'Pedestrians',
    28: 'Children crossing',
    29: 'Bicycles crossing',
    30: 'Beware of ice/snow',
    31: 'Wild animals crossing',
    32: 'End of all speed and passing limits',
    33: 'Turn right ahead',
    34: 'Turn left ahead',
    35: 'Ahead only',
    36: 'Go straight or right',
    37: 'Go straight or left',
    38: 'Keep right',
    39: 'Keep left',
    40: 'Roundabout mandatory',
    41: 'End of no passing',
    42: 'End of no passing by vehicles over 3.5 metric tons'
}

# Función para predecir la clase de una imagen
def predict(image):
    image = np.array(image)
    image = cv2.resize(image, (32, 32))
    image = image / 255.0
    image = np.expand_dims(image, axis=0)
    predictions = model.predict(image)
    class_idx = np.argmax(predictions)
    return classes[class_idx]

# Título y descripción de la aplicación
st.title("Traffic Sign Classifier")
st.write("Esta aplicación clasifica señales de tráfico usando un modelo de CNN.")

# Mostrar ejemplos de imágenes del conjunto de datos
st.header("Ejemplos de Imágenes del Conjunto de Datos")
fig, axes = plt.subplots(2, 5, figsize=(15, 6))
axes = axes.ravel()
for i in range(10):
    idx = np.random.randint(0, len(train_images))
    axes[i].imshow(train_images[idx])
    axes[i].set_title(f"Clase: {train_labels[idx].argmax()}")
    axes[i].axis('off')
st.pyplot(fig)
# Mostrar ejemplos de imágenes del conjunto de datos

fig, axes = plt.subplots(2, 5, figsize=(15, 6))
axes = axes.ravel()
for i in range(10):
    idx = np.random.randint(0, len(train_images))
    axes[i].imshow(train_images[idx])
    axes[i].set_title(f"Clase: {train_labels[idx].argmax()}")
    axes[i].axis('off')
st.pyplot(fig)

# Mostrar algunas visualizaciones de EDA
st.header("Visualizaciones de EDA")
fig, ax = plt.subplots(figsize=(10, 6))
sns.countplot(x='label', data=train_df, ax=ax)
ax.set_title("Conteo de Imágenes por Clase")
ax.set_xlabel("Clase")
ax.set_ylabel("Conteo")
st.pyplot(fig)

# Permitir al usuario cargar una imagen
st.header("Carga tu Propia Imagen de Señal de Tráfico")
uploaded_file = st.file_uploader("Elige una imagen...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
    image = Image.open(uploaded_file)
    st.image(image, caption='Imagen Cargada', use_column_width=True)
    st.write("")
    st.write("Clasificando...")
    label = predict(image)
    st.write(f"Esta señal es: {label}")

# Mostrar métricas del modelo
st.header("Métricas del Modelo")
st.write(f"Exactitud del conjunto de prueba: {test_acc:.2f}")