Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- README.md +38 -0
- app.py +3 -1
- requirements.txt +2 -1
README.md
CHANGED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: "Alaska Lightning Strikes Visualization"
|
3 |
+
emoji: "⚡"
|
4 |
+
colorFrom: "blue"
|
5 |
+
colorTo: "purple"
|
6 |
+
sdk: "streamlit"
|
7 |
+
sdk_version: "1.9.0"
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
# Alaska Lightning Strikes Visualization
|
13 |
+
|
14 |
+
This project visualizes lightning strikes in Alaska using `geopandas` and `contextily` to plot the data on an interactive map in a Streamlit application.
|
15 |
+
|
16 |
+
## Description
|
17 |
+
|
18 |
+
This application reads lightning strike data from a shapefile, projects it to a different coordinate reference system, and plots it on an interactive map with a basemap for better visualization. The data is plotted using `geopandas` and the basemap is added using `contextily`.
|
19 |
+
|
20 |
+
## Setup
|
21 |
+
|
22 |
+
To run this application, you need the following dependencies:
|
23 |
+
|
24 |
+
- `streamlit`
|
25 |
+
- `geopandas`
|
26 |
+
- `contextily`
|
27 |
+
- `matplotlib`
|
28 |
+
|
29 |
+
These dependencies are listed in the `requirements.txt` file and will be automatically installed when you deploy this application on Hugging Face Spaces.
|
30 |
+
|
31 |
+
## Usage
|
32 |
+
|
33 |
+
To use the application:
|
34 |
+
|
35 |
+
1. Input the shapefile path to load the data.
|
36 |
+
2. The application will process the data and visualize it on a map.
|
37 |
+
|
38 |
+
|
app.py
CHANGED
@@ -8,6 +8,7 @@ import requests
|
|
8 |
import folium
|
9 |
import zipfile
|
10 |
from streamlit.components.v1 import html
|
|
|
11 |
|
12 |
# Función para descargar y descomprimir el archivo
|
13 |
def download_and_extract_data():
|
@@ -19,7 +20,7 @@ def download_and_extract_data():
|
|
19 |
# Descargar y descomprimir los datos
|
20 |
st.title('Alaska Lightning Detection Network Analysis')
|
21 |
|
22 |
-
st.subheader('
|
23 |
|
24 |
with st.spinner('Downloading and extracting data...'):
|
25 |
download_and_extract_data()
|
@@ -132,3 +133,4 @@ ax.set_xlabel('Date')
|
|
132 |
ax.set_ylabel('Count')
|
133 |
ax.grid(True)
|
134 |
st.pyplot(fig)
|
|
|
|
8 |
import folium
|
9 |
import zipfile
|
10 |
from streamlit.components.v1 import html
|
11 |
+
import contextily as cx
|
12 |
|
13 |
# Función para descargar y descomprimir el archivo
|
14 |
def download_and_extract_data():
|
|
|
20 |
# Descargar y descomprimir los datos
|
21 |
st.title('Alaska Lightning Detection Network Analysis')
|
22 |
|
23 |
+
st.subheader('Verificar los rayos. ')
|
24 |
|
25 |
with st.spinner('Downloading and extracting data...'):
|
26 |
download_and_extract_data()
|
|
|
133 |
ax.set_ylabel('Count')
|
134 |
ax.grid(True)
|
135 |
st.pyplot(fig)
|
136 |
+
|
requirements.txt
CHANGED
@@ -7,4 +7,5 @@ requests
|
|
7 |
folium
|
8 |
matplotlib
|
9 |
mapclassify
|
10 |
-
streamlit-folium
|
|
|
|
7 |
folium
|
8 |
matplotlib
|
9 |
mapclassify
|
10 |
+
streamlit-folium
|
11 |
+
contextily
|