import gradio as gr from transformers import pipeline # 加载 Hugging Face 上的预训练模型(以 DeepSeek 为例) from huggingface_hub import login from transformers import pipeline # 登录 Hugging Face login(token="your_huggingface_token") # 加载模型 model_name = "deepseek-ai/deepseek-7b" pipe = pipeline("text-generation", model=model_name, tokenizer=model_name) # 定义与模型对话的函数 def chat_with_ai(prompt): # 使用模型生成文本 response = pipe(prompt, max_length=100, do_sample=True) return response[0]["generated_text"] # 创建 Gradio 界面 with gr.Blocks() as demo: gr.Markdown("# 🤖 AI Chatbot powered by DeepSeek") # 聊天框组件 chatbot = gr.Chatbot() msg = gr.Textbox(label="Type your message:") clear = gr.Button("Clear") # 定义响应函数,处理用户输入并更新聊天历史 def respond(message, chat_history): response = chat_with_ai(message) chat_history.append((message, response)) # 将对话记录添加到聊天历史 return "", chat_history # 提交消息并更新聊天记录 msg.submit(respond, [msg, chatbot], [msg, chatbot]) # 清空聊天记录 clear.click(lambda: [], None, chatbot) # 启动 Gradio 界面 demo.launch()