Create Math
Browse files
Math
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
3 |
+
|
4 |
+
# 加载 DeepSeekMath 模型和分词器
|
5 |
+
model_name = "deepseek-ai/deepseek-math-7b-instruct"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
8 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
9 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
10 |
+
|
11 |
+
# 定义带有链式推理的数学问题
|
12 |
+
messages = [
|
13 |
+
{"role": "user", "content": "what is the integral of x^2 from 0 to 2?\nPlease reason step by step, and put your final answer within \\boxed{}."}
|
14 |
+
]
|
15 |
+
|
16 |
+
# 将问题转换为模型输入格式
|
17 |
+
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
18 |
+
|
19 |
+
# 生成模型的输出
|
20 |
+
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
|
21 |
+
|
22 |
+
# 解码输出并打印结果
|
23 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
24 |
+
print(result)
|