1st update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,68 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
gr.load("models/HuggingFaceH4/zephyr-7b-alpha").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
gr.load("models/HuggingFaceH4/zephyr-7b-alpha").launch()
|
4 |
+
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
import gradio as gr
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
+
import faiss
|
10 |
+
|
11 |
+
# Step 1: Load Precomputed Embeddings and Metadata
|
12 |
+
def load_embeddings(embeddings_folder='embeddings'):
|
13 |
+
embeddings = []
|
14 |
+
metadata = []
|
15 |
+
for file in os.listdir(embeddings_folder):
|
16 |
+
if file.endswith('.npy'):
|
17 |
+
embedding = np.load(os.path.join(embeddings_folder, file))
|
18 |
+
embeddings.append(embedding)
|
19 |
+
# Assuming metadata is stored in a corresponding .txt file
|
20 |
+
meta_file = file.replace('.npy', '.txt')
|
21 |
+
with open(os.path.join(embeddings_folder, meta_file), 'r') as f:
|
22 |
+
metadata.append(f.read().strip())
|
23 |
+
return np.array(embeddings), metadata
|
24 |
+
|
25 |
+
embeddings, metadata = load_embeddings()
|
26 |
+
|
27 |
+
# Step 2: Set Up FAISS Index
|
28 |
+
dimension = embeddings.shape[1]
|
29 |
+
index = faiss.IndexFlatL2(dimension)
|
30 |
+
index.add(embeddings)
|
31 |
+
|
32 |
+
# Step 3: Load the Language Model
|
33 |
+
model_name = "HuggingFaceH4/zephyr-7b-alpha"
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
36 |
+
|
37 |
+
# Step 4: Define the Retrieval Function
|
38 |
+
def retrieve_documents(query, top_k=3):
|
39 |
+
query_embedding = np.mean([embeddings[i] for i in range(len(metadata)) if query.lower() in metadata[i].lower()], axis=0)
|
40 |
+
distances, indices = index.search(np.array([query_embedding]), top_k)
|
41 |
+
retrieved_docs = [metadata[idx] for idx in indices[0]]
|
42 |
+
return retrieved_docs
|
43 |
+
|
44 |
+
# Step 5: Define the Response Generation Function
|
45 |
+
def generate_response(query):
|
46 |
+
retrieved_docs = retrieve_documents(query)
|
47 |
+
context = " ".join(retrieved_docs)
|
48 |
+
input_text = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
|
49 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
50 |
+
output = model.generate(**inputs, max_length=512)
|
51 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
52 |
+
return answer
|
53 |
+
|
54 |
+
# Step 6: Create Gradio Interface
|
55 |
+
def gradio_interface(query):
|
56 |
+
response = generate_response(query)
|
57 |
+
return response
|
58 |
+
|
59 |
+
iface = gr.Interface(
|
60 |
+
fn=gradio_interface,
|
61 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your query here..."),
|
62 |
+
outputs="text",
|
63 |
+
title="RAG-based Course Search",
|
64 |
+
description="Enter a query to search for relevant courses using Retrieval Augmented Generation."
|
65 |
+
)
|
66 |
+
|
67 |
+
if __name__ == "__main__":
|
68 |
+
iface.launch()
|