|
import argparse |
|
from copy import deepcopy |
|
import util |
|
from pprint import pprint |
|
from collections import defaultdict |
|
import pandas as pd |
|
import json |
|
|
|
|
|
def get_domain(x): |
|
for domain in ['chest_xray', 'mri', 'histology', 'gross', 'ct_scan']: |
|
in_domain = x['domain'][domain] |
|
if in_domain: |
|
return domain |
|
|
|
|
|
|
|
def main(args): |
|
scores_data = util.load_file_jsonl(args.scores_file) |
|
predictions = [(x['question_id'], x['type'], get_domain(x), x['gpt_eval'].split('\n')[0].split(' ')) for x in scores_data] |
|
|
|
score_type_dict = defaultdict(lambda: defaultdict(list)) |
|
for q_id, q_type, domain, (a1_score, a2_score) in predictions: |
|
score_type_dict[q_type][1].append(a1_score) |
|
score_type_dict[q_type][2].append(a2_score) |
|
score_type_dict['overall'][1].append(a1_score) |
|
score_type_dict['overall'][2].append(a2_score) |
|
score_type_dict[domain][1].append(a1_score) |
|
score_type_dict[domain][2].append(a2_score) |
|
|
|
result = defaultdict(dict) |
|
|
|
for q_type, score_dict in score_type_dict.items(): |
|
result[q_type]['gpt4_score'] = util.get_avg(score_dict[1]) |
|
result[q_type]['pred_score'] = util.get_avg(score_dict[2]) |
|
result[q_type]['pred_relative_score'] = util.get_avg([float(s2)/float(s1) for s1, s2 in zip(score_dict[1], score_dict[2])])*100 |
|
result[q_type]['data_size'] = len(score_dict[1]) |
|
|
|
df = pd.DataFrame.from_dict(result).filter(['conversation', 'detailed_description', 'chest_xray', 'mri', 'histology', 'gross', 'ct_scan', 'overall']) |
|
print(df) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser("GPT-4 Multimodal Chat Eval Postprocessing", add_help=True) |
|
parser.add_argument("--scores-file", default="", metavar="FILE", help="input path to gpt-4 score file") |
|
args = parser.parse_args() |
|
main(args) |