Spaces:
Configuration error
Configuration error
Create backend.py
Browse files- backend.py +395 -0
backend.py
ADDED
|
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
|
| 7 |
+
"""
|
| 8 |
+
Sample new images from a pre-trained DiT.
|
| 9 |
+
"""
|
| 10 |
+
import os
|
| 11 |
+
import sys
|
| 12 |
+
import math
|
| 13 |
+
try:
|
| 14 |
+
import utils
|
| 15 |
+
|
| 16 |
+
from diffusion import create_diffusion
|
| 17 |
+
from download import find_model
|
| 18 |
+
except:
|
| 19 |
+
sys.path.append(os.path.split(sys.path[0])[0])
|
| 20 |
+
import utils
|
| 21 |
+
from diffusion import create_diffusion
|
| 22 |
+
from download import find_model
|
| 23 |
+
|
| 24 |
+
import torch
|
| 25 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 26 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 27 |
+
import argparse
|
| 28 |
+
import torchvision
|
| 29 |
+
|
| 30 |
+
from einops import rearrange
|
| 31 |
+
from models import get_models
|
| 32 |
+
from torchvision.utils import save_image
|
| 33 |
+
from diffusers.models import AutoencoderKL
|
| 34 |
+
from models.clip import TextEmbedder
|
| 35 |
+
from omegaconf import OmegaConf
|
| 36 |
+
from PIL import Image
|
| 37 |
+
import numpy as np
|
| 38 |
+
from torchvision import transforms
|
| 39 |
+
sys.path.append("..")
|
| 40 |
+
from datasets import video_transforms
|
| 41 |
+
from decord import VideoReader
|
| 42 |
+
from utils import mask_generation_before
|
| 43 |
+
from natsort import natsorted
|
| 44 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 45 |
+
from tca.tca_transform import tca_transform_model
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_input(args):
|
| 49 |
+
input_path = args.input_path
|
| 50 |
+
transform_video = transforms.Compose([
|
| 51 |
+
video_transforms.ToTensorVideo(), # TCHW
|
| 52 |
+
video_transforms.ResizeVideo((args.image_h, args.image_w)),
|
| 53 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
|
| 54 |
+
])
|
| 55 |
+
temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval)
|
| 56 |
+
if input_path is not None:
|
| 57 |
+
print(f'loading video from {input_path}')
|
| 58 |
+
if os.path.isdir(input_path):
|
| 59 |
+
file_list = os.listdir(input_path)
|
| 60 |
+
video_frames = []
|
| 61 |
+
if args.mask_type.startswith('onelast'):
|
| 62 |
+
num = int(args.mask_type.split('onelast')[-1])
|
| 63 |
+
# get first and last frame
|
| 64 |
+
first_frame_path = os.path.join(input_path, natsorted(file_list)[0])
|
| 65 |
+
last_frame_path = os.path.join(input_path, natsorted(file_list)[-1])
|
| 66 |
+
first_frame = torch.as_tensor(np.array(Image.open(first_frame_path).convert("RGB"), dtype=np.uint8, copy=True)).unsqueeze(0)
|
| 67 |
+
last_frame = torch.as_tensor(np.array(Image.open(last_frame_path).convert("RGB"), dtype=np.uint8, copy=True)).unsqueeze(0)
|
| 68 |
+
for i in range(num):
|
| 69 |
+
video_frames.append(first_frame)
|
| 70 |
+
# add zeros to frames
|
| 71 |
+
num_zeros = args.num_frames-2*num
|
| 72 |
+
for i in range(num_zeros):
|
| 73 |
+
zeros = torch.zeros_like(first_frame)
|
| 74 |
+
video_frames.append(zeros)
|
| 75 |
+
for i in range(num):
|
| 76 |
+
video_frames.append(last_frame)
|
| 77 |
+
n = 0
|
| 78 |
+
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
|
| 79 |
+
video_frames = transform_video(video_frames)
|
| 80 |
+
elif args.mask_type.startswith('video_onelast'):
|
| 81 |
+
num = int(args.mask_type.split('onelast')[-1])
|
| 82 |
+
first_frame_path = os.path.join(input_path, natsorted(file_list)[0])
|
| 83 |
+
last_frame_path = os.path.join(input_path, natsorted(file_list)[-1])
|
| 84 |
+
video_reader_first = VideoReader(first_frame_path)
|
| 85 |
+
video_reader_last = VideoReader(last_frame_path)
|
| 86 |
+
total_frames_first = len(video_reader_first)
|
| 87 |
+
total_frames_last = len(video_reader_last)
|
| 88 |
+
start_frame_ind_f, end_frame_ind_f = temporal_sample_func(total_frames_first)
|
| 89 |
+
start_frame_ind_l, end_frame_ind_l = temporal_sample_func(total_frames_last)
|
| 90 |
+
frame_indice_f = np.linspace(start_frame_ind_f, end_frame_ind_f-1, args.num_frames, dtype=int)
|
| 91 |
+
frame_indice_l = np.linspace(start_frame_ind_l, end_frame_ind_l-1, args.num_frames, dtype=int)
|
| 92 |
+
video_frames_first = torch.from_numpy(video_reader_first.get_batch(frame_indice_f).asnumpy()).permute(0, 3, 1, 2).contiguous()
|
| 93 |
+
video_frames_last = torch.from_numpy(video_reader_last.get_batch(frame_indice_l).asnumpy()).permute(0, 3, 1, 2).contiguous()
|
| 94 |
+
video_frames_first = transform_video(video_frames_first) # f,c,h,w
|
| 95 |
+
video_frames_last = transform_video(video_frames_last)
|
| 96 |
+
num_zeros = args.num_frames-2*num
|
| 97 |
+
video_frames.append(video_frames_first[-num:])
|
| 98 |
+
for i in range(num_zeros):
|
| 99 |
+
zeros = torch.zeros_like(video_frames_first[0]).unsqueeze(0)
|
| 100 |
+
video_frames.append(zeros)
|
| 101 |
+
video_frames.append(video_frames_last[:num])
|
| 102 |
+
video_frames = torch.cat(video_frames, dim=0)
|
| 103 |
+
# video_frames = transform_video(video_frames)
|
| 104 |
+
n = num
|
| 105 |
+
else:
|
| 106 |
+
for file in file_list:
|
| 107 |
+
if file.endswith('jpg') or file.endswith('png'):
|
| 108 |
+
image = torch.as_tensor(np.array(Image.open(file), dtype=np.uint8, copy=True)).unsqueeze(0)
|
| 109 |
+
video_frames.append(image)
|
| 110 |
+
else:
|
| 111 |
+
continue
|
| 112 |
+
n = 0
|
| 113 |
+
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
|
| 114 |
+
video_frames = transform_video(video_frames)
|
| 115 |
+
return video_frames, n
|
| 116 |
+
elif os.path.isfile(input_path):
|
| 117 |
+
_, full_file_name = os.path.split(input_path)
|
| 118 |
+
file_name, extention = os.path.splitext(full_file_name)
|
| 119 |
+
if extention == '.jpg' or extention == '.png':
|
| 120 |
+
# raise TypeError('a single image is not supported yet!!')
|
| 121 |
+
print("reading video from a image")
|
| 122 |
+
video_frames = []
|
| 123 |
+
num = int(args.mask_type.split('first')[-1])
|
| 124 |
+
first_frame = torch.as_tensor(np.array(Image.open(input_path).convert("RGB"), dtype=np.uint8, copy=True)).unsqueeze(0)
|
| 125 |
+
for i in range(num):
|
| 126 |
+
video_frames.append(first_frame)
|
| 127 |
+
num_zeros = args.num_frames - num
|
| 128 |
+
for i in range(num_zeros):
|
| 129 |
+
zeros = torch.zeros_like(first_frame)
|
| 130 |
+
video_frames.append(zeros)
|
| 131 |
+
n = 0
|
| 132 |
+
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
|
| 133 |
+
H_scale = args.image_h / video_frames.shape[2]
|
| 134 |
+
W_scale = args.image_w / video_frames.shape[3]
|
| 135 |
+
scale_ = H_scale
|
| 136 |
+
if W_scale < H_scale:
|
| 137 |
+
scale_ = W_scale
|
| 138 |
+
video_frames = torch.nn.functional.interpolate(video_frames, scale_factor=scale_, mode="bilinear", align_corners=False)
|
| 139 |
+
video_frames = transform_video(video_frames)
|
| 140 |
+
return video_frames, n
|
| 141 |
+
elif extention == '.mp4':
|
| 142 |
+
video_reader = VideoReader(input_path)
|
| 143 |
+
total_frames = len(video_reader)
|
| 144 |
+
start_frame_ind, end_frame_ind = temporal_sample_func(total_frames)
|
| 145 |
+
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, args.num_frames, dtype=int)
|
| 146 |
+
video_frames = torch.from_numpy(video_reader.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous()
|
| 147 |
+
video_frames = transform_video(video_frames)
|
| 148 |
+
n = args.researve_frame
|
| 149 |
+
del video_reader
|
| 150 |
+
return video_frames, n
|
| 151 |
+
else:
|
| 152 |
+
raise TypeError(f'{extention} is not supported !!')
|
| 153 |
+
else:
|
| 154 |
+
raise ValueError('Please check your path input!!')
|
| 155 |
+
else:
|
| 156 |
+
# raise ValueError('Need to give a video or some images')
|
| 157 |
+
print('given video is None, using text to video')
|
| 158 |
+
video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8)
|
| 159 |
+
args.mask_type = 'all'
|
| 160 |
+
video_frames = transform_video(video_frames)
|
| 161 |
+
n = 0
|
| 162 |
+
return video_frames, n
|
| 163 |
+
|
| 164 |
+
def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
|
| 165 |
+
# masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
|
| 166 |
+
# masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
|
| 167 |
+
# masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
|
| 168 |
+
# mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_size, latent_size)).unsqueeze(1)
|
| 169 |
+
b,f,c,h,w=video_input.shape
|
| 170 |
+
latent_h = args.image_size[0] // 8
|
| 171 |
+
latent_w = args.image_size[1] // 8
|
| 172 |
+
|
| 173 |
+
# prepare inputs
|
| 174 |
+
# video_input = rearrange(video_input, 'b f c h w -> (b f) c h w').contiguous()
|
| 175 |
+
# video_input = vae.encode(video_input).latent_dist.sample().mul_(0.18215)
|
| 176 |
+
# video_input = rearrange(video_input, '(b f) c h w -> b c f h w', b=b).contiguous()
|
| 177 |
+
if args.use_fp16:
|
| 178 |
+
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
|
| 179 |
+
masked_video = masked_video.to(dtype=torch.float16)
|
| 180 |
+
mask = mask.to(dtype=torch.float16)
|
| 181 |
+
else:
|
| 182 |
+
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
|
| 186 |
+
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
|
| 187 |
+
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
|
| 188 |
+
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
# classifier_free_guidance
|
| 192 |
+
if args.do_classifier_free_guidance:
|
| 193 |
+
masked_video = torch.cat([masked_video] * 2)
|
| 194 |
+
mask = torch.cat([mask] * 2)
|
| 195 |
+
z = torch.cat([z] * 2)
|
| 196 |
+
prompt_all = [prompt] + [args.negative_prompt]
|
| 197 |
+
else:
|
| 198 |
+
masked_video = masked_video
|
| 199 |
+
mask = mask
|
| 200 |
+
z = z
|
| 201 |
+
prompt_all = [prompt]
|
| 202 |
+
|
| 203 |
+
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
|
| 204 |
+
model_kwargs = dict(encoder_hidden_states=text_prompt,
|
| 205 |
+
class_labels=None,
|
| 206 |
+
cfg_scale=args.cfg_scale,
|
| 207 |
+
use_fp16=args.use_fp16,) # tav unet
|
| 208 |
+
|
| 209 |
+
# Sample images:
|
| 210 |
+
if args.sample_method == 'ddim':
|
| 211 |
+
samples = diffusion.ddim_sample_loop(
|
| 212 |
+
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
|
| 213 |
+
mask=mask, x_start=masked_video, use_concat=args.use_mask
|
| 214 |
+
)
|
| 215 |
+
elif args.sample_method == 'ddpm':
|
| 216 |
+
samples = diffusion.p_sample_loop(
|
| 217 |
+
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
|
| 218 |
+
mask=mask, x_start=masked_video, use_concat=args.use_mask
|
| 219 |
+
)
|
| 220 |
+
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
|
| 221 |
+
if args.use_fp16:
|
| 222 |
+
samples = samples.to(dtype=torch.float16)
|
| 223 |
+
|
| 224 |
+
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
|
| 225 |
+
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
|
| 226 |
+
return video_clip
|
| 227 |
+
|
| 228 |
+
def auto_inpainting_temp_split(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
|
| 229 |
+
b,f,c,h,w=video_input.shape
|
| 230 |
+
latent_h = args.image_size[0] // 8
|
| 231 |
+
latent_w = args.image_size[1] // 8
|
| 232 |
+
|
| 233 |
+
if args.use_fp16:
|
| 234 |
+
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
|
| 235 |
+
masked_video = masked_video.to(dtype=torch.float16)
|
| 236 |
+
mask = mask.to(dtype=torch.float16)
|
| 237 |
+
else:
|
| 238 |
+
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
|
| 242 |
+
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
|
| 243 |
+
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
|
| 244 |
+
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
|
| 245 |
+
|
| 246 |
+
if args.do_classifier_free_guidance:
|
| 247 |
+
masked_video = torch.cat([masked_video] * 3)
|
| 248 |
+
mask = torch.cat([mask] * 3)
|
| 249 |
+
z = torch.cat([z] * 3)
|
| 250 |
+
prompt_all = [prompt] + [prompt] + [args.negative_prompt]
|
| 251 |
+
prompt_temp = [prompt] + [""] + [""]
|
| 252 |
+
else:
|
| 253 |
+
masked_video = masked_video
|
| 254 |
+
mask = mask
|
| 255 |
+
z = z
|
| 256 |
+
prompt_all = [prompt]
|
| 257 |
+
|
| 258 |
+
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
|
| 259 |
+
temporal_text_prompt = text_encoder(text_prompts=prompt_temp, train=False)
|
| 260 |
+
model_kwargs = dict(encoder_hidden_states=text_prompt,
|
| 261 |
+
class_labels=None,
|
| 262 |
+
cfg_scale=args.cfg_scale,
|
| 263 |
+
use_fp16=args.use_fp16,
|
| 264 |
+
encoder_temporal_hidden_states=temporal_text_prompt) # tav unet
|
| 265 |
+
|
| 266 |
+
# Sample images:
|
| 267 |
+
if args.sample_method == 'ddim':
|
| 268 |
+
samples = diffusion.ddim_sample_loop(
|
| 269 |
+
model.forward_with_cfg_temp_split, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
|
| 270 |
+
mask=mask, x_start=masked_video, use_concat=args.use_mask
|
| 271 |
+
)
|
| 272 |
+
elif args.sample_method == 'ddpm':
|
| 273 |
+
samples = diffusion.p_sample_loop(
|
| 274 |
+
model.forward_with_cfg_temp_split, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
|
| 275 |
+
mask=mask, x_start=masked_video, use_concat=args.use_mask
|
| 276 |
+
)
|
| 277 |
+
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
|
| 278 |
+
if args.use_fp16:
|
| 279 |
+
samples = samples.to(dtype=torch.float16)
|
| 280 |
+
|
| 281 |
+
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
|
| 282 |
+
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
|
| 283 |
+
return video_clip
|
| 284 |
+
|
| 285 |
+
def main(args):
|
| 286 |
+
# torch.cuda.empty_cache()
|
| 287 |
+
print("--------------------------begin running--------------------------", flush=True)
|
| 288 |
+
if args.gpu is not None:
|
| 289 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
|
| 290 |
+
# Setup PyTorch:
|
| 291 |
+
if args.seed:
|
| 292 |
+
torch.manual_seed(args.seed)
|
| 293 |
+
torch.set_grad_enabled(False)
|
| 294 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 295 |
+
# device = "cpu"
|
| 296 |
+
|
| 297 |
+
if args.ckpt is None:
|
| 298 |
+
assert args.model == "DiT-XL/2", "Only DiT-XL/2 models are available for auto-download."
|
| 299 |
+
assert args.image_size in [256, 512]
|
| 300 |
+
assert args.num_classes == 1000
|
| 301 |
+
|
| 302 |
+
# Load model:
|
| 303 |
+
latent_h = args.image_size[0] // 8
|
| 304 |
+
latent_w = args.image_size[1] // 8
|
| 305 |
+
args.image_h = args.image_size[0]
|
| 306 |
+
args.image_w = args.image_size[1]
|
| 307 |
+
args.latent_h = latent_h
|
| 308 |
+
args.latent_w = latent_w
|
| 309 |
+
print('loading model')
|
| 310 |
+
model = get_models(args.use_mask, args).to(device)
|
| 311 |
+
model = tca_transform_model(model).to(device)
|
| 312 |
+
# model = temp_scale_set(model, 0.98)
|
| 313 |
+
|
| 314 |
+
if args.use_compile:
|
| 315 |
+
model = torch.compile(model)
|
| 316 |
+
if args.enable_xformers_memory_efficient_attention:
|
| 317 |
+
if is_xformers_available():
|
| 318 |
+
model.enable_xformers_memory_efficient_attention()
|
| 319 |
+
else:
|
| 320 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
| 321 |
+
|
| 322 |
+
# Auto-download a pre-trained model or load a custom DiT checkpoint from train.py:
|
| 323 |
+
ckpt_path = args.ckpt or f"DiT-XL-2-{args.image_size}x{args.image_size}.pt"
|
| 324 |
+
state_dict = find_model(ckpt_path)
|
| 325 |
+
model.load_state_dict(state_dict)
|
| 326 |
+
print('loading succeed')
|
| 327 |
+
|
| 328 |
+
model.eval() # important!
|
| 329 |
+
pretrained_model_path = args.pretrained_model_path
|
| 330 |
+
diffusion = create_diffusion(str(args.num_sampling_steps))
|
| 331 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device)
|
| 332 |
+
text_encoder = TextEmbedder(tokenizer_path=pretrained_model_path + "tokenizer",
|
| 333 |
+
encoder_path=pretrained_model_path + "text_encoder").to(device)
|
| 334 |
+
if args.use_fp16:
|
| 335 |
+
print('Warnning: using half percision for inferencing!')
|
| 336 |
+
vae.to(dtype=torch.float16)
|
| 337 |
+
model.to(dtype=torch.float16)
|
| 338 |
+
text_encoder.to(dtype=torch.float16)
|
| 339 |
+
|
| 340 |
+
# Labels to condition the model with (feel free to change):
|
| 341 |
+
prompts = args.text_prompt
|
| 342 |
+
class_name = [p + args.additional_prompt for p in prompts]
|
| 343 |
+
|
| 344 |
+
if args.use_autoregressive:
|
| 345 |
+
if not os.path.exists(os.path.join(args.save_img_path)):
|
| 346 |
+
os.makedirs(os.path.join(args.save_img_path))
|
| 347 |
+
video_input, researve_frames = get_input(args) # f,c,h,w
|
| 348 |
+
video_input = video_input.to(device).unsqueeze(0) # b,f,c,h,w
|
| 349 |
+
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) # b,f,c,h,w
|
| 350 |
+
# TODO: change the first3 to last3
|
| 351 |
+
if args.mask_type.startswith('first') and researve_frames != 0:
|
| 352 |
+
masked_video = torch.cat([video_input[:,-researve_frames:], video_input[:,:-researve_frames]], dim=1) * (mask == 0)
|
| 353 |
+
else:
|
| 354 |
+
masked_video = video_input * (mask == 0)
|
| 355 |
+
|
| 356 |
+
all_video = []
|
| 357 |
+
if researve_frames != 0:
|
| 358 |
+
all_video.append(video_input)
|
| 359 |
+
for idx, prompt in enumerate(class_name):
|
| 360 |
+
if idx == 0:
|
| 361 |
+
video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
|
| 362 |
+
video_clip_ = video_clip.unsqueeze(0)
|
| 363 |
+
all_video.append(video_clip_[:, researve_frames:])
|
| 364 |
+
else:
|
| 365 |
+
researve_frames = args.researve_frame
|
| 366 |
+
if args.mask_type.startswith('first') and researve_frames != 0:
|
| 367 |
+
masked_video = torch.cat([video_clip_[:,-researve_frames:], video_clip_[:,:-researve_frames]], dim=1) * (mask == 0)
|
| 368 |
+
else:
|
| 369 |
+
masked_video = video_input * (mask == 0)
|
| 370 |
+
video_clip = auto_inpainting(args, video_clip.unsqueeze(0), masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
|
| 371 |
+
video_clip_ = video_clip.unsqueeze(0)
|
| 372 |
+
all_video.append(video_clip_[:, researve_frames:])
|
| 373 |
+
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
|
| 374 |
+
if args.mask_type.startswith('video_onelast'):
|
| 375 |
+
torchvision.io.write_video(os.path.join(args.save_img_path, 'clip_video_' + '%04d' % idx + '.mp4'), video_[researve_frames:-researve_frames], fps=8)
|
| 376 |
+
else:
|
| 377 |
+
torchvision.io.write_video(os.path.join(args.save_img_path, 'clip_video_' + '%04d' % idx + '.mp4'), video_, fps=8)
|
| 378 |
+
if args.mask_type.startswith('first') and researve_frames != 0:
|
| 379 |
+
all_video = torch.cat(all_video, dim=1).squeeze(0)
|
| 380 |
+
video_ = ((all_video * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
|
| 381 |
+
torchvision.io.write_video(os.path.join(args.save_img_path, 'complete_video' + '.mp4'), video_, fps=8)
|
| 382 |
+
else:
|
| 383 |
+
# all_video = torch.cat(all_video, dim=-1).squeeze(0)
|
| 384 |
+
pass
|
| 385 |
+
print(f'save in {args.save_img_path}')
|
| 386 |
+
return os.path.join(args.save_img_path, 'clip_video_' + '%04d' % idx + '.mp4')
|
| 387 |
+
|
| 388 |
+
|
| 389 |
+
def call_main(input):
|
| 390 |
+
parser = argparse.ArgumentParser()
|
| 391 |
+
parser.add_argument("--config", type=str, default="./configs/sample_mask.yaml")
|
| 392 |
+
args = parser.parse_args()
|
| 393 |
+
omega_conf = OmegaConf.load(args.config)
|
| 394 |
+
omega_conf.text_prompt = [input]
|
| 395 |
+
return main(omega_conf)
|