File size: 19,472 Bytes
4a40efc
 
 
 
 
 
 
a03b19d
 
4a40efc
a03b19d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174e58d
a03b19d
 
 
 
 
 
 
 
 
4a40efc
 
 
 
 
 
a03b19d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298c80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03b19d
4a40efc
290c968
4a40efc
 
 
 
 
290c968
 
f28a5b1
 
4a40efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f607a7
4a40efc
 
 
 
 
 
 
 
 
aca37d6
 
 
4a40efc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df015e0
 
 
4a40efc
 
 
3f607a7
4a40efc
 
 
 
df015e0
4a40efc
 
290c968
 
4a40efc
 
 
 
 
 
 
 
 
 
 
 
 
 
290c968
4a40efc
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import os
import threading
import time

import gradio as gr
import torch
# from diffusers import CogVideoXPipeline

import torch
from models.pipeline import VchitectXLPipeline
import random
import numpy as np
import os


import inspect
from typing import Any, Callable, Dict, List, Optional, Union

import torch
from transformers import (
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    T5TokenizerFast,
)
from models.modeling_t5 import T5EncoderModel
from models.VchitectXL import VchitectXLTransformerModel
from transformers import AutoTokenizer, PretrainedConfig, CLIPTextModel, CLIPTextModelWithProjection
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FromSingleFileMixin, SD3LoraLoaderMixin
from diffusers.models.autoencoders import AutoencoderKL
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (
    is_torch_xla_available,
    logging,
    replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline

# from patch_conv import convert_model
from op_replace import replace_all_layernorms
if is_torch_xla_available():
    import torch_xla.core.xla_model as xm
    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

import math

from diffusers.utils import export_to_video
from datetime import datetime, timedelta
# from openai import OpenAI
import spaces
import moviepy.editor as mp

# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


import torch.fft
@torch.no_grad()
def myfft(tensor):
    if True:
        if True:
            tensor_fft = torch.fft.fft2(tensor)
            # 将频谱中心移到图像中心
            tensor_fft_shifted = torch.fft.fftshift(tensor_fft)
            # 获取张量的尺寸
            B, C, H, W = tensor.size()
            # 定义频率分离的半径
            radius = min(H, W) // 5  # 可以调整此值
            
            # 创建一个中心为(H/2, W/2)的圆形掩码
            Y, X = torch.meshgrid(torch.arange(H), torch.arange(W))
            center_x, center_y = W // 2, H // 2
            mask = (X - center_x) ** 2 + (Y - center_y) ** 2 <= radius ** 2
            # 创建高频和低频掩码
            low_freq_mask = mask.unsqueeze(0).unsqueeze(0).to(tensor.device)
            high_freq_mask = ~low_freq_mask
            
            # 获取低频分量
            low_freq_fft = tensor_fft_shifted * low_freq_mask
            # low_freq_fft_shifted = torch.fft.ifftshift(low_freq_fft)
            # low_freq = torch.fft.ifft2(low_freq_fft_shifted).real
            
            # 获取高频分量
            high_freq_fft = tensor_fft_shifted * high_freq_mask
            # high_freq_fft_shifted = torch.fft.ifftshift(high_freq_fft)
            # high_freq = torch.fft.ifft2(high_freq_fft_shifted).real

            return low_freq_fft, high_freq_fft


@torch.no_grad()
def acc_call(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        prompt_3: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        frames: Optional[int] = None,
        num_inference_steps: int = 28,
        timesteps: List[int] = None,
        guidance_scale: float = 7.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        negative_prompt_2: Optional[Union[str, List[str]]] = None,
        negative_prompt_3: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        clip_skip: Optional[int] = None,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
    ):
    if True:
        # print('acc call.......')
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor
        frames = frames or 24

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            prompt_3,
            height,
            width,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_3=negative_prompt_3,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self.execution_device
        

        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_3=prompt_3,
            negative_prompt=negative_prompt,
            negative_prompt_2=negative_prompt_2,
            negative_prompt_3=negative_prompt_3,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            device=device,
            clip_skip=self.clip_skip,
            num_images_per_prompt=num_images_per_prompt,
        )

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
        self._num_timesteps = len(timesteps)

        # 5. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            frames,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Denoising loop
        # with self.progress_bar(total=num_inference_steps) as progress_bar:
        from tqdm import tqdm
        for i, t in tqdm(enumerate(timesteps)):
            if self.interrupt:
                continue

            # print(i, t,'******',timesteps)
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
            timestep = t.expand(latents.shape[0])

            noise_pred_text = self.transformer(
                hidden_states=latent_model_input[1,:].unsqueeze(0),
                timestep=timestep,
                encoder_hidden_states=prompt_embeds[1,:].unsqueeze(0),
                pooled_projections=pooled_prompt_embeds[1,:].unsqueeze(0),
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
                # idx=i,
            )[0]

            if i<30 or (i>30 and i%5==0):
                noise_pred_uncond = self.transformer(
                    hidden_states=latent_model_input[0,:].unsqueeze(0),
                    timestep=timestep,
                    encoder_hidden_states=prompt_embeds[0,:].unsqueeze(0),
                    pooled_projections=pooled_prompt_embeds[0,:].unsqueeze(0),
                    joint_attention_kwargs=self.joint_attention_kwargs,
                    return_dict=False,
                    # idx=i,
                )[0]
                # print(noise_pred_uncond.shape,noise_pred_text.shape)
                # exit(0)
                # torch.Size([80, 16, 54, 96]) torch.Size([80, 16, 54, 96])
                if i>=28:
                    lf_uc,hf_uc = myfft(noise_pred_uncond.float())
                    lf_c, hf_c = myfft(noise_pred_text.float())
                    delta_lf = lf_uc -lf_c
                    delta_hf = hf_uc - hf_c
            else:
                lf_c, hf_c = myfft(noise_pred_text.float())
                delta_lf = delta_lf * 1.1
                delta_hf = delta_hf * 1.25
                new_lf_uc = delta_lf + lf_c
                new_hf_uc = delta_hf + hf_c

                combine_uc = new_lf_uc + new_hf_uc
                combined_fft = torch.fft.ifftshift(combine_uc)
                noise_pred_uncond = torch.fft.ifft2(combined_fft).real



            self._guidance_scale = 1 + guidance_scale * (
                (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
            )
            # perform guidance
            if self.do_classifier_free_guidance:
                # noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            latents_dtype = latents.dtype
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

            if latents.dtype != latents_dtype:
                if torch.backends.mps.is_available():
                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
                    latents = latents.to(latents_dtype)

            if callback_on_step_end is not None:
                callback_kwargs = {}
                for k in callback_on_step_end_tensor_inputs:
                    callback_kwargs[k] = locals()[k]
                callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                latents = callback_outputs.pop("latents", latents)
                prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
                negative_pooled_prompt_embeds = callback_outputs.pop(
                    "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
                )

            # call the callback, if provided
            # if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
            #     progress_bar.update()

            if XLA_AVAILABLE:
                xm.mark_step()

        # if output_type == "latent":
        #     image = latents

        # else:
        latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
        videos = []
        for v_idx in range(latents.shape[1]):
            image = self.vae.decode(latents[:,v_idx], return_dict=False)[0]
            image = self.image_processor.postprocess(image, output_type=output_type)
            videos.append(image[0])
        
        return videos
        
import os
from huggingface_hub import login
login(token=os.getenv('HF_TOKEN'))

dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = VchitectXLPipeline("Vchitect/Vchitect-XL-2B",device)

# pipe.acc_call = acc_call.__get__(pipe)
import types
# pipe.__call__ = types.MethodType(acc_call, pipe)
pipe.__class__.__call__ = acc_call

os.makedirs("./output", exist_ok=True)
os.makedirs("./gradio_tmp", exist_ok=True)


@spaces.GPU(duration=120)
def infer(prompt: str, progress=gr.Progress(track_tqdm=True)):
    torch.cuda.empty_cache()
    with torch.cuda.amp.autocast(dtype=torch.bfloat16):
        video = pipe(
            prompt,
            negative_prompt="",
            num_inference_steps=50,
            guidance_scale=7.5,
            width=768,
            height=432, #480x288  624x352 432x240 768x432
            frames=16
        )
    
    return video


def save_video(tensor):
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    video_path = f"./output/{timestamp}.mp4"
    os.makedirs(os.path.dirname(video_path), exist_ok=True)
    export_to_video(tensor, video_path)
    return video_path


def convert_to_gif(video_path):
    clip = mp.VideoFileClip(video_path)
    clip = clip.set_fps(8)
    clip = clip.resize(height=240)
    gif_path = video_path.replace(".mp4", ".gif")
    clip.write_gif(gif_path, fps=8)
    return gif_path


def delete_old_files():
    while True:
        now = datetime.now()
        cutoff = now - timedelta(minutes=10)
        directories = ["./output", "./gradio_tmp"]

        for directory in directories:
            for filename in os.listdir(directory):
                file_path = os.path.join(directory, filename)
                if os.path.isfile(file_path):
                    file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
                    if file_mtime < cutoff:
                        os.remove(file_path)
        time.sleep(600)


threading.Thread(target=delete_old_files, daemon=True).start()

with gr.Blocks() as demo:
    gr.Markdown("""
           <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
               Vchitect-2.0 Huggingface Space🤗
           </div>
           <div style="text-align: center;">
               <a href="https://huggingface.co/Vchitect-XL/Vchitect-XL-2B">🤗 2B Model Hub</a> |
               <a href="https://vchitect.intern-ai.org.cn/">🌐 Website</a> |
           </div>
           <div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
            ⚠️ This demo is for academic research and experiential use only. 
            Users should strictly adhere to local laws and ethics.
            </div>
            <div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
            Note: Due to GPU memory limitations, the demo only supports 2s video generation. For the full version, you'll need to run it locally.
            </div>
           """)
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here", lines=5)

            # with gr.Row():
            #     gr.Markdown(
            #         "✨Upon pressing the enhanced prompt button, we will use [GLM-4 Model](https://github.com/THUDM/GLM-4) to polish the prompt and overwrite the original one.")
            #     enhance_button = gr.Button("✨ Enhance Prompt(Optional)")

            with gr.Column():
                # gr.Markdown("**Optional Parameters** (default values are recommended)<br>"
                #             "Increasing the number of inference steps will produce more detailed videos, but it will slow down the process.<br>"
                #             "50 steps are recommended for most cases.<br>"
                #             "For the 5B model, 50 steps will take approximately 350 seconds.")
                # with gr.Row():
                #     num_inference_steps = gr.Number(label="Inference Steps", value=50)
                #     guidance_scale = gr.Number(label="Guidance Scale", value=7.5)
                generate_button = gr.Button("🎬 Generate Video")

        with gr.Column():
            video_output = gr.Video(label="Generate Video", width=768, height=432)
            with gr.Row():
                download_video_button = gr.File(label="📥 Download Video", visible=False)
                download_gif_button = gr.File(label="📥 Download GIF", visible=False)




    def generate(prompt, model_choice, progress=gr.Progress(track_tqdm=True)):
        tensor = infer(prompt, progress=progress)
        video_path = save_video(tensor)
        video_update = gr.update(visible=True, value=video_path)
        gif_path = convert_to_gif(video_path)
        gif_update = gr.update(visible=True, value=gif_path)

        return video_path, video_update, gif_update


    # def enhance_prompt_func(prompt):
    #     return convert_prompt(prompt, retry_times=1)


    generate_button.click(
        generate,
        inputs=[prompt],
        outputs=[video_output, download_video_button, download_gif_button]
    )

    # enhance_button.click(
    #     enhance_prompt_func,
    #     inputs=[prompt],
    #     outputs=[prompt]
    # )

if __name__ == "__main__":
    demo.launch()