Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| sys.path.append(os.path.split(sys.path[0])[0]) | |
| from .unet import UNet3DConditionModel | |
| from torch.optim.lr_scheduler import LambdaLR | |
| def customized_lr_scheduler(optimizer, warmup_steps=5000): # 5000 from u-vit | |
| from torch.optim.lr_scheduler import LambdaLR | |
| def fn(step): | |
| if warmup_steps > 0: | |
| return min(step / warmup_steps, 1) | |
| else: | |
| return 1 | |
| return LambdaLR(optimizer, fn) | |
| def get_lr_scheduler(optimizer, name, **kwargs): | |
| if name == 'warmup': | |
| return customized_lr_scheduler(optimizer, **kwargs) | |
| elif name == 'cosine': | |
| from torch.optim.lr_scheduler import CosineAnnealingLR | |
| return CosineAnnealingLR(optimizer, **kwargs) | |
| else: | |
| raise NotImplementedError(name) | |
| def get_models(args): | |
| if 'TAV' in args.model: | |
| pretrained_model_path = args.pretrained_model_path | |
| return UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", use_concat=args.use_mask) | |
| else: | |
| raise '{} Model Not Supported!'.format(args.model) | |