Spaces:
Runtime error
Runtime error
| # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py | |
| import os | |
| import sys | |
| sys.path.append(os.path.split(sys.path[0])[0]) | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange | |
| class InflatedConv3d(nn.Conv2d): | |
| def forward(self, x): | |
| video_length = x.shape[2] | |
| x = rearrange(x, "b c f h w -> (b f) c h w") | |
| x = super().forward(x) | |
| x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) | |
| return x | |
| class Upsample3D(nn.Module): | |
| def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.use_conv_transpose = use_conv_transpose | |
| self.name = name | |
| conv = None | |
| if use_conv_transpose: | |
| raise NotImplementedError | |
| elif use_conv: | |
| conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1) | |
| if name == "conv": | |
| self.conv = conv | |
| else: | |
| self.Conv2d_0 = conv | |
| def forward(self, hidden_states, output_size=None): | |
| assert hidden_states.shape[1] == self.channels | |
| if self.use_conv_transpose: | |
| raise NotImplementedError | |
| # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
| dtype = hidden_states.dtype | |
| if dtype == torch.bfloat16: | |
| hidden_states = hidden_states.to(torch.float32) | |
| # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
| if hidden_states.shape[0] >= 64: | |
| hidden_states = hidden_states.contiguous() | |
| # if `output_size` is passed we force the interpolation output | |
| # size and do not make use of `scale_factor=2` | |
| if output_size is None: | |
| hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest") | |
| else: | |
| hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") | |
| # If the input is bfloat16, we cast back to bfloat16 | |
| if dtype == torch.bfloat16: | |
| hidden_states = hidden_states.to(dtype) | |
| if self.use_conv: | |
| if self.name == "conv": | |
| hidden_states = self.conv(hidden_states) | |
| else: | |
| hidden_states = self.Conv2d_0(hidden_states) | |
| return hidden_states | |
| class Downsample3D(nn.Module): | |
| def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): | |
| super().__init__() | |
| self.channels = channels | |
| self.out_channels = out_channels or channels | |
| self.use_conv = use_conv | |
| self.padding = padding | |
| stride = 2 | |
| self.name = name | |
| if use_conv: | |
| conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
| else: | |
| raise NotImplementedError | |
| if name == "conv": | |
| self.Conv2d_0 = conv | |
| self.conv = conv | |
| elif name == "Conv2d_0": | |
| self.conv = conv | |
| else: | |
| self.conv = conv | |
| def forward(self, hidden_states): | |
| assert hidden_states.shape[1] == self.channels | |
| if self.use_conv and self.padding == 0: | |
| raise NotImplementedError | |
| assert hidden_states.shape[1] == self.channels | |
| hidden_states = self.conv(hidden_states) | |
| return hidden_states | |
| class ResnetBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| in_channels, | |
| out_channels=None, | |
| conv_shortcut=False, | |
| dropout=0.0, | |
| temb_channels=512, | |
| groups=32, | |
| groups_out=None, | |
| pre_norm=True, | |
| eps=1e-6, | |
| non_linearity="swish", | |
| time_embedding_norm="default", | |
| output_scale_factor=1.0, | |
| use_in_shortcut=None, | |
| ): | |
| super().__init__() | |
| self.pre_norm = pre_norm | |
| self.pre_norm = True | |
| self.in_channels = in_channels | |
| out_channels = in_channels if out_channels is None else out_channels | |
| self.out_channels = out_channels | |
| self.use_conv_shortcut = conv_shortcut | |
| self.time_embedding_norm = time_embedding_norm | |
| self.output_scale_factor = output_scale_factor | |
| if groups_out is None: | |
| groups_out = groups | |
| self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
| self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
| if temb_channels is not None: | |
| if self.time_embedding_norm == "default": | |
| time_emb_proj_out_channels = out_channels | |
| elif self.time_embedding_norm == "scale_shift": | |
| time_emb_proj_out_channels = out_channels * 2 | |
| else: | |
| raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") | |
| self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels) | |
| else: | |
| self.time_emb_proj = None | |
| self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
| self.dropout = torch.nn.Dropout(dropout) | |
| self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
| if non_linearity == "swish": | |
| self.nonlinearity = lambda x: F.silu(x) | |
| elif non_linearity == "mish": | |
| self.nonlinearity = Mish() | |
| elif non_linearity == "silu": | |
| self.nonlinearity = nn.SiLU() | |
| self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut | |
| self.conv_shortcut = None | |
| if self.use_in_shortcut: | |
| self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
| def forward(self, input_tensor, temb): | |
| hidden_states = input_tensor | |
| hidden_states = self.norm1(hidden_states) | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.conv1(hidden_states) | |
| if temb is not None: | |
| temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None] | |
| if temb is not None and self.time_embedding_norm == "default": | |
| hidden_states = hidden_states + temb | |
| hidden_states = self.norm2(hidden_states) | |
| if temb is not None and self.time_embedding_norm == "scale_shift": | |
| scale, shift = torch.chunk(temb, 2, dim=1) | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| hidden_states = self.nonlinearity(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.conv2(hidden_states) | |
| if self.conv_shortcut is not None: | |
| input_tensor = self.conv_shortcut(input_tensor) | |
| output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
| return output_tensor | |
| class Mish(torch.nn.Module): | |
| def forward(self, hidden_states): | |
| return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) |