Spaces:
Runtime error
Runtime error
| # Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py | |
| import os | |
| import sys | |
| sys.path.append(os.path.split(sys.path[0])[0]) | |
| from dataclasses import dataclass | |
| from typing import Optional | |
| import math | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.utils import BaseOutput | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.models.attention import FeedForward, AdaLayerNorm | |
| from rotary_embedding_torch import RotaryEmbedding | |
| from typing import Callable, Optional | |
| from einops import rearrange, repeat | |
| try: | |
| from diffusers.models.modeling_utils import ModelMixin | |
| except: | |
| from diffusers.modeling_utils import ModelMixin # 0.11.1 | |
| class Transformer3DModelOutput(BaseOutput): | |
| sample: torch.FloatTensor | |
| if is_xformers_available(): | |
| import xformers | |
| import xformers.ops | |
| else: | |
| xformers = None | |
| def exists(x): | |
| return x is not None | |
| class CrossAttention(nn.Module): | |
| r""" | |
| copy from diffuser 0.11.1 | |
| A cross attention layer. | |
| Parameters: | |
| query_dim (`int`): The number of channels in the query. | |
| cross_attention_dim (`int`, *optional*): | |
| The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
| heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. | |
| dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. | |
| dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
| bias (`bool`, *optional*, defaults to False): | |
| Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
| """ | |
| def __init__( | |
| self, | |
| query_dim: int, | |
| cross_attention_dim: Optional[int] = None, | |
| heads: int = 8, | |
| dim_head: int = 64, | |
| dropout: float = 0.0, | |
| bias=False, | |
| upcast_attention: bool = False, | |
| upcast_softmax: bool = False, | |
| added_kv_proj_dim: Optional[int] = None, | |
| norm_num_groups: Optional[int] = None, | |
| use_relative_position: bool = False, | |
| ): | |
| super().__init__() | |
| # print('num head', heads) | |
| inner_dim = dim_head * heads | |
| cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
| self.upcast_attention = upcast_attention | |
| self.upcast_softmax = upcast_softmax | |
| self.scale = dim_head**-0.5 | |
| self.heads = heads | |
| self.dim_head = dim_head | |
| # for slice_size > 0 the attention score computation | |
| # is split across the batch axis to save memory | |
| # You can set slice_size with `set_attention_slice` | |
| self.sliceable_head_dim = heads | |
| self._slice_size = None | |
| self._use_memory_efficient_attention_xformers = False | |
| self.added_kv_proj_dim = added_kv_proj_dim | |
| if norm_num_groups is not None: | |
| self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) | |
| else: | |
| self.group_norm = None | |
| self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) | |
| self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
| self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) | |
| if self.added_kv_proj_dim is not None: | |
| self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
| self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) | |
| self.to_out = nn.ModuleList([]) | |
| self.to_out.append(nn.Linear(inner_dim, query_dim)) | |
| self.to_out.append(nn.Dropout(dropout)) | |
| # print(use_relative_position) | |
| self.use_relative_position = use_relative_position | |
| if self.use_relative_position: | |
| self.rotary_emb = RotaryEmbedding(min(32, dim_head)) | |
| # # print(dim_head) | |
| # # print(heads) | |
| # # adopt https://github.com/huggingface/transformers/blob/8a817e1ecac6a420b1bdc701fcc33535a3b96ff5/src/transformers/models/bert/modeling_bert.py#L265 | |
| # self.max_position_embeddings = 32 | |
| # self.distance_embedding = nn.Embedding(2 * self.max_position_embeddings - 1, dim_head) | |
| # self.dropout = nn.Dropout(dropout) | |
| def reshape_heads_to_batch_dim(self, tensor): | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
| tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) | |
| return tensor | |
| def reshape_batch_dim_to_heads(self, tensor): | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
| tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
| return tensor | |
| def reshape_for_scores(self, tensor): | |
| # split heads and dims | |
| # tensor should be [b (h w)] f (d nd) | |
| batch_size, seq_len, dim = tensor.shape | |
| head_size = self.heads | |
| tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
| tensor = tensor.permute(0, 2, 1, 3).contiguous() | |
| return tensor | |
| def same_batch_dim_to_heads(self, tensor): | |
| batch_size, head_size, seq_len, dim = tensor.shape # [b (h w)] nd f d | |
| tensor = tensor.reshape(batch_size, seq_len, dim * head_size) | |
| return tensor | |
| def set_attention_slice(self, slice_size): | |
| if slice_size is not None and slice_size > self.sliceable_head_dim: | |
| raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
| self._slice_size = slice_size | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, use_image_num=None): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| encoder_hidden_states = encoder_hidden_states | |
| if self.group_norm is not None: | |
| hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = self.to_q(hidden_states) # [b (h w)] f (nd * d) | |
| # print('before reshpape query shape', query.shape) | |
| dim = query.shape[-1] | |
| if not self.use_relative_position: | |
| query = self.reshape_heads_to_batch_dim(query) # [b (h w) nd] f d | |
| # print('after reshape query shape', query.shape) | |
| if self.added_kv_proj_dim is not None: | |
| key = self.to_k(hidden_states) | |
| value = self.to_v(hidden_states) | |
| encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) | |
| encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) | |
| key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) | |
| value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) | |
| else: | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = self.to_k(encoder_hidden_states) | |
| value = self.to_v(encoder_hidden_states) | |
| if not self.use_relative_position: | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| if attention_mask is not None: | |
| if attention_mask.shape[-1] != query.shape[1]: | |
| target_length = query.shape[1] | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
| # attention, what we cannot get enough of | |
| if self._use_memory_efficient_attention_xformers: | |
| hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
| # Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
| hidden_states = self._attention(query, key, value, attention_mask) | |
| else: | |
| hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out[1](hidden_states) | |
| return hidden_states | |
| def _attention(self, query, key, value, attention_mask=None): | |
| if self.upcast_attention: | |
| query = query.float() | |
| key = key.float() | |
| attention_scores = torch.baddbmm( | |
| torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), | |
| query, | |
| key.transpose(-1, -2), | |
| beta=0, | |
| alpha=self.scale, | |
| ) | |
| # print('query shape', query.shape) | |
| # print('key shape', key.shape) | |
| # print('value shape', value.shape) | |
| if attention_mask is not None: | |
| # print('attention_mask', attention_mask.shape) | |
| # print('attention_scores', attention_scores.shape) | |
| # exit() | |
| attention_scores = attention_scores + attention_mask | |
| if self.upcast_softmax: | |
| attention_scores = attention_scores.float() | |
| attention_probs = attention_scores.softmax(dim=-1) | |
| # print(attention_probs.shape) | |
| # cast back to the original dtype | |
| attention_probs = attention_probs.to(value.dtype) | |
| # print(attention_probs.shape) | |
| # compute attention output | |
| hidden_states = torch.bmm(attention_probs, value) | |
| # print(hidden_states.shape) | |
| # reshape hidden_states | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| # print(hidden_states.shape) | |
| # exit() | |
| return hidden_states | |
| def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): | |
| batch_size_attention = query.shape[0] | |
| hidden_states = torch.zeros( | |
| (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype | |
| ) | |
| slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] | |
| for i in range(hidden_states.shape[0] // slice_size): | |
| start_idx = i * slice_size | |
| end_idx = (i + 1) * slice_size | |
| query_slice = query[start_idx:end_idx] | |
| key_slice = key[start_idx:end_idx] | |
| if self.upcast_attention: | |
| query_slice = query_slice.float() | |
| key_slice = key_slice.float() | |
| attn_slice = torch.baddbmm( | |
| torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), | |
| query_slice, | |
| key_slice.transpose(-1, -2), | |
| beta=0, | |
| alpha=self.scale, | |
| ) | |
| if attention_mask is not None: | |
| attn_slice = attn_slice + attention_mask[start_idx:end_idx] | |
| if self.upcast_softmax: | |
| attn_slice = attn_slice.float() | |
| attn_slice = attn_slice.softmax(dim=-1) | |
| # cast back to the original dtype | |
| attn_slice = attn_slice.to(value.dtype) | |
| attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) | |
| hidden_states[start_idx:end_idx] = attn_slice | |
| # reshape hidden_states | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| return hidden_states | |
| def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): | |
| # TODO attention_mask | |
| query = query.contiguous() | |
| key = key.contiguous() | |
| value = value.contiguous() | |
| hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) | |
| hidden_states = self.reshape_batch_dim_to_heads(hidden_states) | |
| return hidden_states | |
| class Transformer3DModel(ModelMixin, ConfigMixin): | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| num_layers: int = 1, | |
| dropout: float = 0.0, | |
| norm_num_groups: int = 32, | |
| cross_attention_dim: Optional[int] = None, | |
| attention_bias: bool = False, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| use_first_frame: bool = False, | |
| use_relative_position: bool = False, | |
| rotary_emb: bool = None, | |
| ): | |
| super().__init__() | |
| self.use_linear_projection = use_linear_projection | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| inner_dim = num_attention_heads * attention_head_dim | |
| # Define input layers | |
| self.in_channels = in_channels | |
| self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) | |
| if use_linear_projection: | |
| self.proj_in = nn.Linear(in_channels, inner_dim) | |
| else: | |
| self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) | |
| # Define transformers blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| use_first_frame=use_first_frame, | |
| use_relative_position=use_relative_position, | |
| rotary_emb=rotary_emb, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| # 4. Define output layers | |
| if use_linear_projection: | |
| self.proj_out = nn.Linear(in_channels, inner_dim) | |
| else: | |
| self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
| def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, use_image_num=None, return_dict: bool = True): | |
| # Input | |
| assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
| if self.training: | |
| video_length = hidden_states.shape[2] - use_image_num | |
| hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w").contiguous() | |
| encoder_hidden_states_length = encoder_hidden_states.shape[1] | |
| encoder_hidden_states_video = encoder_hidden_states[:, :encoder_hidden_states_length - use_image_num, ...] | |
| encoder_hidden_states_video = repeat(encoder_hidden_states_video, 'b m n c -> b (m f) n c', f=video_length).contiguous() | |
| encoder_hidden_states_image = encoder_hidden_states[:, encoder_hidden_states_length - use_image_num:, ...] | |
| encoder_hidden_states = torch.cat([encoder_hidden_states_video, encoder_hidden_states_image], dim=1) | |
| encoder_hidden_states = rearrange(encoder_hidden_states, 'b m n c -> (b m) n c').contiguous() | |
| else: | |
| video_length = hidden_states.shape[2] | |
| hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w").contiguous() | |
| encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length).contiguous() | |
| batch, channel, height, weight = hidden_states.shape | |
| residual = hidden_states | |
| hidden_states = self.norm(hidden_states) | |
| if not self.use_linear_projection: | |
| hidden_states = self.proj_in(hidden_states) | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
| else: | |
| inner_dim = hidden_states.shape[1] | |
| hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) | |
| hidden_states = self.proj_in(hidden_states) | |
| # Blocks | |
| for block in self.transformer_blocks: | |
| hidden_states = block( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| timestep=timestep, | |
| video_length=video_length, | |
| use_image_num=use_image_num, | |
| ) | |
| # Output | |
| if not self.use_linear_projection: | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| ) | |
| hidden_states = self.proj_out(hidden_states) | |
| else: | |
| hidden_states = self.proj_out(hidden_states) | |
| hidden_states = ( | |
| hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() | |
| ) | |
| output = hidden_states + residual | |
| output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length + use_image_num).contiguous() | |
| if not return_dict: | |
| return (output,) | |
| return Transformer3DModelOutput(sample=output) | |
| class BasicTransformerBlock(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| dropout=0.0, | |
| cross_attention_dim: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| attention_bias: bool = False, | |
| only_cross_attention: bool = False, | |
| upcast_attention: bool = False, | |
| use_first_frame: bool = False, | |
| use_relative_position: bool = False, | |
| rotary_emb: bool = False, | |
| ): | |
| super().__init__() | |
| self.only_cross_attention = only_cross_attention | |
| # print(only_cross_attention) | |
| self.use_ada_layer_norm = num_embeds_ada_norm is not None | |
| # print(self.use_ada_layer_norm) | |
| self.use_first_frame = use_first_frame | |
| # Spatial-Attn | |
| self.attn1 = CrossAttention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| cross_attention_dim=None, | |
| upcast_attention=upcast_attention, | |
| ) | |
| self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
| # # SC-Attn | |
| # self.attn1 = SparseCausalAttention( | |
| # query_dim=dim, | |
| # heads=num_attention_heads, | |
| # dim_head=attention_head_dim, | |
| # dropout=dropout, | |
| # bias=attention_bias, | |
| # cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
| # upcast_attention=upcast_attention, | |
| # ) | |
| # self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
| # Text Cross-Attn | |
| if cross_attention_dim is not None: | |
| self.attn2 = CrossAttention( | |
| query_dim=dim, | |
| cross_attention_dim=cross_attention_dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| upcast_attention=upcast_attention, | |
| ) | |
| else: | |
| self.attn2 = None | |
| if cross_attention_dim is not None: | |
| self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
| else: | |
| self.norm2 = None | |
| # # Temp Frame-Cross-Attn; add tahn scale factor | |
| # self.attn_fcross = SparseCausalAttention( | |
| # query_dim=dim, | |
| # heads=num_attention_heads, | |
| # dim_head=attention_head_dim, | |
| # dropout=dropout, | |
| # bias=attention_bias, | |
| # cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
| # upcast_attention=upcast_attention, | |
| # ) | |
| # self.norm_fcross = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
| # nn.init.zeros_(self.attn_fcross.to_out[0].weight.data) | |
| # Temp | |
| self.attn_temp = TemporalAttention( | |
| query_dim=dim, | |
| heads=num_attention_heads, | |
| dim_head=attention_head_dim, | |
| dropout=dropout, | |
| bias=attention_bias, | |
| cross_attention_dim=None, | |
| upcast_attention=upcast_attention, | |
| rotary_emb=rotary_emb, | |
| ) | |
| self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) | |
| nn.init.zeros_(self.attn_temp.to_out[0].weight.data) | |
| # Feed-forward | |
| self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
| self.norm3 = nn.LayerNorm(dim) | |
| def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, op=None): | |
| if not is_xformers_available(): | |
| print("Here is how to install it") | |
| raise ModuleNotFoundError( | |
| "Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
| " xformers", | |
| name="xformers", | |
| ) | |
| elif not torch.cuda.is_available(): | |
| raise ValueError( | |
| "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" | |
| " available for GPU " | |
| ) | |
| else: | |
| try: | |
| # Make sure we can run the memory efficient attention | |
| _ = xformers.ops.memory_efficient_attention( | |
| torch.randn((1, 2, 40), device="cuda"), | |
| torch.randn((1, 2, 40), device="cuda"), | |
| torch.randn((1, 2, 40), device="cuda"), | |
| ) | |
| except Exception as e: | |
| raise e | |
| self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
| if self.attn2 is not None: | |
| self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
| # self.attn_fcross._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
| # self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers | |
| def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None, use_image_num=None): | |
| # SparseCausal-Attention | |
| norm_hidden_states = ( | |
| self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) | |
| ) | |
| if self.only_cross_attention: | |
| hidden_states = ( | |
| self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states | |
| ) | |
| else: | |
| hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, use_image_num=use_image_num) + hidden_states | |
| # # SparseCausal-Attention | |
| # norm_hidden_states = ( | |
| # self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) | |
| # ) | |
| # if self.only_cross_attention: | |
| # hidden_states = ( | |
| # self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states | |
| # ) | |
| # else: | |
| # hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states | |
| # # Temporal FrameCross Attention | |
| # norm_hidden_states = ( | |
| # self.norm_fcross(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_fcross(hidden_states) | |
| # ) | |
| # hidden_states = self.attn_fcross( | |
| # norm_hidden_states, attention_mask=attention_mask, video_length=video_length, use_image_num=use_image_num) + hidden_states | |
| if self.attn2 is not None: | |
| # Cross-Attention | |
| norm_hidden_states = ( | |
| self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
| ) | |
| hidden_states = ( | |
| self.attn2( | |
| norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask | |
| ) | |
| + hidden_states | |
| ) | |
| # Temporal Attention | |
| if self.training: | |
| d = hidden_states.shape[1] | |
| hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length + use_image_num).contiguous() | |
| hidden_states_video = hidden_states[:, :video_length, :] | |
| hidden_states_image = hidden_states[:, video_length:, :] | |
| # print(hidden_states_video.shape) | |
| # print(hidden_states_image.shape) | |
| # if self.training: | |
| # # prepare attention mask; mask images in temporal attention | |
| # attention_mask_shape = (video_length + use_image_num) // 8 + 1 | |
| # video_image_length = video_length + use_image_num | |
| # attention_mask = torch.zeros([8 * attention_mask_shape, 8 * attention_mask_shape], | |
| # dtype=hidden_states.dtype, device=hidden_states.device)[:video_image_length, :video_image_length] | |
| # attention_mask[:, video_length:] = -math.inf | |
| norm_hidden_states_video = ( | |
| self.norm_temp(hidden_states_video, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states_video) | |
| ) | |
| # print(norm_hidden_states.shape) | |
| hidden_states_video = self.attn_temp(norm_hidden_states_video) + hidden_states_video | |
| hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1) | |
| hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d).contiguous() | |
| else: | |
| d = hidden_states.shape[1] | |
| hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length + use_image_num).contiguous() | |
| norm_hidden_states = ( | |
| self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) | |
| ) | |
| # print(norm_hidden_states.shape) | |
| hidden_states = self.attn_temp(norm_hidden_states) + hidden_states | |
| hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d).contiguous() | |
| # Feed-forward | |
| hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states | |
| return hidden_states | |
| class SparseCausalAttention(CrossAttention): | |
| def forward_video(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| encoder_hidden_states = encoder_hidden_states | |
| if self.group_norm is not None: | |
| hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = self.to_q(hidden_states) | |
| dim = query.shape[-1] | |
| query = self.reshape_heads_to_batch_dim(query) | |
| if self.added_kv_proj_dim is not None: | |
| raise NotImplementedError | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = self.to_k(encoder_hidden_states) | |
| value = self.to_v(encoder_hidden_states) | |
| former_frame_index = torch.arange(video_length) - 1 | |
| former_frame_index[0] = 0 | |
| key = rearrange(key, "(b f) d c -> b f d c", f=video_length).contiguous() | |
| key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2) | |
| key = rearrange(key, "b f d c -> (b f) d c").contiguous() | |
| value = rearrange(value, "(b f) d c -> b f d c", f=video_length).contiguous() | |
| value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2) | |
| value = rearrange(value, "b f d c -> (b f) d c").contiguous() | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| if attention_mask is not None: | |
| if attention_mask.shape[-1] != query.shape[1]: | |
| target_length = query.shape[1] | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
| # attention, what we cannot get enough of | |
| if self._use_memory_efficient_attention_xformers: | |
| hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
| # Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
| hidden_states = self._attention(query, key, value, attention_mask) | |
| else: | |
| hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out[1](hidden_states) | |
| return hidden_states | |
| def forward_image(self, hidden_states, encoder_hidden_states=None, attention_mask=None, use_image_num=None): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| encoder_hidden_states = encoder_hidden_states | |
| if self.group_norm is not None: | |
| hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = self.to_q(hidden_states) # [b (h w)] f (nd * d) | |
| # if self.use_relative_position: | |
| # print('before attention query shape', query.shape) | |
| dim = query.shape[-1] | |
| if not self.use_relative_position: | |
| query = self.reshape_heads_to_batch_dim(query) # [b (h w) nd] f d | |
| # if self.use_relative_position: | |
| # print('before attention query shape', query.shape) | |
| if self.added_kv_proj_dim is not None: | |
| key = self.to_k(hidden_states) | |
| value = self.to_v(hidden_states) | |
| encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) | |
| encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) | |
| key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) | |
| value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) | |
| else: | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = self.to_k(encoder_hidden_states) | |
| value = self.to_v(encoder_hidden_states) | |
| if not self.use_relative_position: | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| if attention_mask is not None: | |
| if attention_mask.shape[-1] != query.shape[1]: | |
| target_length = query.shape[1] | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
| # attention, what we cannot get enough of | |
| if self._use_memory_efficient_attention_xformers: | |
| hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
| # Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
| hidden_states = self._attention(query, key, value, attention_mask) | |
| else: | |
| hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out[1](hidden_states) | |
| return hidden_states | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, use_image_num=None): | |
| if self.training: | |
| # print(use_image_num) | |
| hidden_states = rearrange(hidden_states, "(b f) d c -> b f d c", f=video_length + use_image_num).contiguous() | |
| hidden_states_video = hidden_states[:, :video_length, ...] | |
| hidden_states_image = hidden_states[:, video_length:, ...] | |
| hidden_states_video = rearrange(hidden_states_video, 'b f d c -> (b f) d c').contiguous() | |
| hidden_states_image = rearrange(hidden_states_image, 'b f d c -> (b f) d c').contiguous() | |
| hidden_states_video = self.forward_video(hidden_states=hidden_states_video, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| video_length=video_length) | |
| # print('hidden_states_video', hidden_states_video.shape) | |
| hidden_states_image = self.forward_image(hidden_states=hidden_states_image, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask) | |
| # print('hidden_states_image', hidden_states_image.shape) | |
| hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=0) | |
| return hidden_states | |
| # exit() | |
| else: | |
| return self.forward_video(hidden_states=hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| video_length=video_length) | |
| class TemporalAttention(CrossAttention): | |
| def __init__(self, | |
| query_dim: int, | |
| cross_attention_dim: Optional[int] = None, | |
| heads: int = 8, | |
| dim_head: int = 64, | |
| dropout: float = 0.0, | |
| bias=False, | |
| upcast_attention: bool = False, | |
| upcast_softmax: bool = False, | |
| added_kv_proj_dim: Optional[int] = None, | |
| norm_num_groups: Optional[int] = None, | |
| rotary_emb=None): | |
| super().__init__(query_dim, cross_attention_dim, heads, dim_head, dropout, bias, upcast_attention, upcast_softmax, added_kv_proj_dim, norm_num_groups) | |
| # relative time positional embeddings | |
| self.time_rel_pos_bias = RelativePositionBias(heads=heads, max_distance=32) # realistically will not be able to generate that many frames of video... yet | |
| self.rotary_emb = rotary_emb | |
| def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): | |
| time_rel_pos_bias = self.time_rel_pos_bias(hidden_states.shape[1], device=hidden_states.device) | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| encoder_hidden_states = encoder_hidden_states | |
| if self.group_norm is not None: | |
| hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| query = self.to_q(hidden_states) # [b (h w)] f (nd * d) | |
| dim = query.shape[-1] | |
| if self.added_kv_proj_dim is not None: | |
| key = self.to_k(hidden_states) | |
| value = self.to_v(hidden_states) | |
| encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) | |
| key = self.reshape_heads_to_batch_dim(key) | |
| value = self.reshape_heads_to_batch_dim(value) | |
| encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) | |
| encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) | |
| key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) | |
| value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) | |
| else: | |
| encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states | |
| key = self.to_k(encoder_hidden_states) | |
| value = self.to_v(encoder_hidden_states) | |
| if attention_mask is not None: | |
| if attention_mask.shape[-1] != query.shape[1]: | |
| target_length = query.shape[1] | |
| attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
| attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) | |
| # attention, what we cannot get enough of | |
| if self._use_memory_efficient_attention_xformers: | |
| hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) | |
| # Some versions of xformers return output in fp32, cast it back to the dtype of the input | |
| hidden_states = hidden_states.to(query.dtype) | |
| else: | |
| if self._slice_size is None or query.shape[0] // self._slice_size == 1: | |
| hidden_states = self._attention(query, key, value, attention_mask, time_rel_pos_bias) | |
| else: | |
| hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) | |
| # linear proj | |
| hidden_states = self.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = self.to_out[1](hidden_states) | |
| return hidden_states | |
| def _attention(self, query, key, value, attention_mask=None, time_rel_pos_bias=None): | |
| if self.upcast_attention: | |
| query = query.float() | |
| key = key.float() | |
| # print('query shape', query.shape) | |
| # print('key shape', key.shape) | |
| # print('value shape', value.shape) | |
| # reshape for adding time positional bais | |
| query = self.scale * rearrange(query, 'b f (h d) -> b h f d', h=self.heads) # d: dim_head; n: heads | |
| key = rearrange(key, 'b f (h d) -> b h f d', h=self.heads) # d: dim_head; n: heads | |
| value = rearrange(value, 'b f (h d) -> b h f d', h=self.heads) # d: dim_head; n: heads | |
| # print('query shape', query.shape) | |
| # print('key shape', key.shape) | |
| # print('value shape', value.shape) | |
| # torch.baddbmm only accepte 3-D tensor | |
| # https://runebook.dev/zh/docs/pytorch/generated/torch.baddbmm | |
| # attention_scores = self.scale * torch.matmul(query, key.transpose(-1, -2)) | |
| if exists(self.rotary_emb): | |
| query = self.rotary_emb.rotate_queries_or_keys(query) | |
| key = self.rotary_emb.rotate_queries_or_keys(key) | |
| attention_scores = torch.einsum('... h i d, ... h j d -> ... h i j', query, key) | |
| # print('attention_scores shape', attention_scores.shape) | |
| # print('time_rel_pos_bias shape', time_rel_pos_bias.shape) | |
| # print('attention_mask shape', attention_mask.shape) | |
| attention_scores = attention_scores + time_rel_pos_bias | |
| # print(attention_scores.shape) | |
| # bert from huggin face | |
| # attention_scores = attention_scores / math.sqrt(self.dim_head) | |
| # # Normalize the attention scores to probabilities. | |
| # attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
| if attention_mask is not None: | |
| # add attention mask | |
| attention_scores = attention_scores + attention_mask | |
| # vdm | |
| attention_scores = attention_scores - attention_scores.amax(dim = -1, keepdim = True).detach() | |
| attention_probs = nn.functional.softmax(attention_scores, dim=-1) | |
| # print(attention_probs[0][0]) | |
| # cast back to the original dtype | |
| attention_probs = attention_probs.to(value.dtype) | |
| # compute attention output | |
| # hidden_states = torch.matmul(attention_probs, value) | |
| hidden_states = torch.einsum('... h i j, ... h j d -> ... h i d', attention_probs, value) | |
| # print(hidden_states.shape) | |
| # hidden_states = self.same_batch_dim_to_heads(hidden_states) | |
| hidden_states = rearrange(hidden_states, 'b h f d -> b f (h d)') | |
| # print(hidden_states.shape) | |
| # exit() | |
| return hidden_states | |
| class RelativePositionBias(nn.Module): | |
| def __init__( | |
| self, | |
| heads=8, | |
| num_buckets=32, | |
| max_distance=128, | |
| ): | |
| super().__init__() | |
| self.num_buckets = num_buckets | |
| self.max_distance = max_distance | |
| self.relative_attention_bias = nn.Embedding(num_buckets, heads) | |
| def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128): | |
| ret = 0 | |
| n = -relative_position | |
| num_buckets //= 2 | |
| ret += (n < 0).long() * num_buckets | |
| n = torch.abs(n) | |
| max_exact = num_buckets // 2 | |
| is_small = n < max_exact | |
| val_if_large = max_exact + ( | |
| torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) | |
| ).long() | |
| val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
| ret += torch.where(is_small, n, val_if_large) | |
| return ret | |
| def forward(self, n, device): | |
| q_pos = torch.arange(n, dtype = torch.long, device = device) | |
| k_pos = torch.arange(n, dtype = torch.long, device = device) | |
| rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') | |
| rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) | |
| values = self.relative_attention_bias(rp_bucket) | |
| return rearrange(values, 'i j h -> h i j') # num_heads, num_frames, num_frames |