Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| sys.path.append(os.path.split(sys.path[0])[0]) | |
| from .dit import DiT_models | |
| from .uvit import UViT_models | |
| from .unet import UNet3DConditionModel | |
| from torch.optim.lr_scheduler import LambdaLR | |
| def customized_lr_scheduler(optimizer, warmup_steps=5000): # 5000 from u-vit | |
| from torch.optim.lr_scheduler import LambdaLR | |
| def fn(step): | |
| if warmup_steps > 0: | |
| return min(step / warmup_steps, 1) | |
| else: | |
| return 1 | |
| return LambdaLR(optimizer, fn) | |
| def get_lr_scheduler(optimizer, name, **kwargs): | |
| if name == 'warmup': | |
| return customized_lr_scheduler(optimizer, **kwargs) | |
| elif name == 'cosine': | |
| from torch.optim.lr_scheduler import CosineAnnealingLR | |
| return CosineAnnealingLR(optimizer, **kwargs) | |
| else: | |
| raise NotImplementedError(name) | |
| def get_models(args): | |
| if 'DiT' in args.model: | |
| return DiT_models[args.model]( | |
| input_size=args.latent_size, | |
| num_classes=args.num_classes, | |
| class_guided=args.class_guided, | |
| num_frames=args.num_frames, | |
| use_lora=args.use_lora, | |
| attention_mode=args.attention_mode | |
| ) | |
| elif 'UViT' in args.model: | |
| return UViT_models[args.model]( | |
| input_size=args.latent_size, | |
| num_classes=args.num_classes, | |
| class_guided=args.class_guided, | |
| num_frames=args.num_frames, | |
| use_lora=args.use_lora, | |
| attention_mode=args.attention_mode | |
| ) | |
| elif 'TAV' in args.model: | |
| pretrained_model_path = args.pretrained_model_path | |
| return UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", use_concat=args.use_mask) | |
| else: | |
| raise '{} Model Not Supported!'.format(args.model) | |