Spaces:
Build error
Build error
File size: 16,161 Bytes
7bfaddc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import gradio as gr
import httpx
import json
import asyncio
import os
import sys
from dotenv import load_dotenv
from typing import List, Dict, Any
# MCP imports
try:
from mcp.server import Server
from mcp.server.stdio import stdio_server
from mcp.types import Tool, TextContent
MCP_AVAILABLE = True
except ImportError:
MCP_AVAILABLE = False
print("MCP not available. Install with: pip install mcp")
# Load environment variables
load_dotenv()
class ConversationTransfer:
def __init__(self):
self.anthropic_key = os.getenv("ANTHROPIC_API_KEY")
self.mistral_key = os.getenv("MISTRAL_API_KEY")
self.hyperbolic_key = os.getenv("HYPERBOLIC_API_KEY")
# Print status
print(f"π API Keys Status:")
print(f" Anthropic: {'β
' if self.anthropic_key else 'β'}")
print(f" Mistral: {'β
' if self.mistral_key else 'β'}")
print(f" Hyperbolic: {'β
' if self.hyperbolic_key else 'β'}")
def parse_conversation(self, text: str) -> List[Dict]:
"""Parse conversation from various formats"""
try:
# Try JSON first
data = json.loads(text)
if isinstance(data, list):
return data
else:
return [data]
except json.JSONDecodeError:
# Parse plain text
return self._parse_plain_text(text)
def _parse_plain_text(self, text: str) -> List[Dict]:
"""Parse plain text conversation"""
messages = []
lines = text.strip().split('\n')
current_role = "user"
current_content = ""
for line in lines:
line = line.strip()
if not line:
continue
# Check for role indicators
if any(line.lower().startswith(prefix) for prefix in ['user:', 'human:', 'you:']):
if current_content:
messages.append({"role": current_role, "content": current_content.strip()})
current_role = "user"
current_content = line.split(':', 1)[1].strip() if ':' in line else line
elif any(line.lower().startswith(prefix) for prefix in ['assistant:', 'ai:', 'bot:', 'claude:', 'gpt:', 'chatgpt:']):
if current_content:
messages.append({"role": current_role, "content": current_content.strip()})
current_role = "assistant"
current_content = line.split(':', 1)[1].strip() if ':' in line else line
else:
current_content += " " + line
if current_content:
messages.append({"role": current_role, "content": current_content.strip()})
return messages
async def send_to_anthropic(self, messages: List[Dict]) -> str:
"""Send conversation to Anthropic Claude"""
if not self.anthropic_key:
return "β Anthropic API key not configured"
# Add transfer context
system_msg = "This conversation was transferred from another LLM. Please continue the conversation naturally, maintaining the same tone and context."
user_messages = [msg for msg in messages if msg["role"] != "system"]
headers = {
"x-api-key": self.anthropic_key,
"content-type": "application/json",
"anthropic-version": "2023-06-01"
}
payload = {
"model": "claude-3-haiku-20240307",
"max_tokens": 1000,
"system": system_msg,
"messages": user_messages
}
try:
async with httpx.AsyncClient(timeout=30.0) as client:
response = await client.post(
"https://api.anthropic.com/v1/messages",
headers=headers,
json=payload
)
response.raise_for_status()
result = response.json()
return result["content"][0]["text"]
except Exception as e:
return f"β Error calling Anthropic: {str(e)}"
async def send_to_mistral(self, messages: List[Dict]) -> str:
"""Send conversation to Mistral"""
if not self.mistral_key:
return "β Mistral API key not configured"
# Add transfer context
system_msg = {"role": "system", "content": "This conversation was transferred from another LLM. Please continue the conversation naturally."}
all_messages = [system_msg] + messages
headers = {
"Authorization": f"Bearer {self.mistral_key}",
"Content-Type": "application/json"
}
payload = {
"model": "mistral-small",
"messages": all_messages,
"max_tokens": 1000
}
try:
async with httpx.AsyncClient(timeout=30.0) as client:
response = await client.post(
"https://api.mistral.ai/v1/chat/completions",
headers=headers,
json=payload
)
response.raise_for_status()
result = response.json()
return result["choices"][0]["message"]["content"]
except Exception as e:
return f"β Error calling Mistral: {str(e)}"
async def send_to_hyperbolic(self, messages: List[Dict]) -> str:
"""Send conversation to Hyperbolic Labs"""
if not self.hyperbolic_key:
return "β Hyperbolic API key not configured"
# Add transfer context
system_msg = {"role": "system", "content": "This conversation was transferred from another LLM. Please continue naturally."}
all_messages = [system_msg] + messages
headers = {
"Authorization": f"Bearer {self.hyperbolic_key}",
"Content-Type": "application/json"
}
payload = {
"model": "meta-llama/Llama-2-7b-chat-hf",
"messages": all_messages,
"max_tokens": 1000
}
try:
async with httpx.AsyncClient(timeout=30.0) as client:
response = await client.post(
"https://api.hyperbolic.xyz/v1/chat/completions",
headers=headers,
json=payload
)
response.raise_for_status()
result = response.json()
return result["choices"][0]["message"]["content"]
except Exception as e:
return f"β Error calling Hyperbolic: {str(e)}"
async def transfer_conversation(self, history_text: str, source_provider: str, target_provider: str) -> str:
"""Main transfer function"""
if not history_text.strip():
return "β Please provide conversation history"
# Parse conversation
try:
messages = self.parse_conversation(history_text)
if not messages:
return "β Could not parse conversation history"
except Exception as e:
return f"β Error parsing conversation: {str(e)}"
# Build result
result = f"π **Transferring Conversation**\n"
result += f" From: {source_provider}\n"
result += f" To: {target_provider}\n"
result += f" Messages: {len(messages)}\n\n"
# Show parsed messages preview
if messages:
result += "π **Conversation Preview:**\n"
for i, msg in enumerate(messages[:2]): # Show first 2 messages
content_preview = msg['content'][:100] + "..." if len(msg['content']) > 100 else msg['content']
result += f" {msg['role']}: {content_preview}\n"
if len(messages) > 2:
result += f" ... and {len(messages)-2} more messages\n"
result += "\n"
# Transfer to target provider
try:
if target_provider.lower() == "anthropic":
response = await self.send_to_anthropic(messages)
elif target_provider.lower() == "mistral":
response = await self.send_to_mistral(messages)
elif target_provider.lower() == "hyperbolic":
response = await self.send_to_hyperbolic(messages)
else:
return f"β Unsupported target provider: {target_provider}"
result += f"β
**Transfer Successful!**\n\n"
result += f"π€ **Response from {target_provider.title()}:**\n"
result += f"{response}"
return result
except Exception as e:
return f"β Transfer failed: {str(e)}"
# Initialize the transfer tool
transfer_tool = ConversationTransfer()
# MCP Server Setup (if available)
if MCP_AVAILABLE:
server = Server("conversation-transfer")
@server.list_tools()
async def list_tools() -> List[Tool]:
return [
Tool(
name="transfer_conversation",
description="Transfer conversation history from one LLM provider to another",
inputSchema={
"type": "object",
"properties": {
"history_text": {
"type": "string",
"description": "Conversation history in JSON or plain text format"
},
"source_provider": {
"type": "string",
"description": "Source LLM provider (e.g., 'ChatGPT', 'Claude', 'Gemini')"
},
"target_provider": {
"type": "string",
"description": "Target LLM provider",
"enum": ["anthropic", "mistral", "hyperbolic"]
}
},
"required": ["history_text", "source_provider", "target_provider"]
}
)
]
@server.call_tool()
async def call_tool(name: str, arguments: Dict[str, Any]) -> List[TextContent]:
if name == "transfer_conversation":
result = await transfer_tool.transfer_conversation(
arguments["history_text"],
arguments["source_provider"],
arguments["target_provider"]
)
return [TextContent(type="text", text=result)]
else:
raise ValueError(f"Unknown tool: {name}")
def transfer_sync(history_text, source_provider, target_provider):
"""Synchronous wrapper for async function"""
return asyncio.run(transfer_tool.transfer_conversation(history_text, source_provider, target_provider))
# Create Gradio interface
def create_interface():
with gr.Blocks(title="LLM Conversation Transfer", theme=gr.themes.Default()) as interface:
gr.Markdown("# π LLM Conversation Transfer Tool")
gr.Markdown("**Seamlessly transfer conversations between different LLM providers!**")
with gr.Row():
with gr.Column(scale=2):
history_input = gr.Textbox(
label="π Conversation History",
placeholder="""Paste your conversation here...
Examples:
β’ Plain text: "User: Hello\nAssistant: Hi there!"
β’ JSON: [{"role": "user", "content": "Hello"}]
β’ ChatGPT export format""",
lines=10,
max_lines=25
)
with gr.Row():
source_dropdown = gr.Dropdown(
choices=["ChatGPT", "Claude", "Gemini", "Mistral", "Other"],
label="π Source Provider",
value="ChatGPT"
)
target_dropdown = gr.Dropdown(
choices=["anthropic", "mistral", "hyperbolic"],
label="π― Target Provider",
value="anthropic"
)
transfer_btn = gr.Button("π Transfer Conversation", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### π Quick Guide")
gr.Markdown("""
**1. Get Your Conversation**
- Copy from ChatGPT, Claude, etc.
- Export as JSON or plain text
**2. Paste & Select**
- Paste in the text box
- Choose source and target
**3. Transfer!**
- Click the button
- Get response from new LLM
### π§ Supported Providers
- β
**Anthropic** (Claude)
- β
**Mistral AI**
- β
**Hyperbolic Labs**
### π Status
""")
# API Status
status_text = "**API Keys:**\n"
status_text += f"- Anthropic: {'β
' if transfer_tool.anthropic_key else 'β'}\n"
status_text += f"- Mistral: {'β
' if transfer_tool.mistral_key else 'β'}\n"
status_text += f"- Hyperbolic: {'β
' if transfer_tool.hyperbolic_key else 'β'}\n"
status_text += f"- MCP Server: {'β
' if MCP_AVAILABLE else 'β'}"
gr.Markdown(status_text)
output = gr.Textbox(
label="π€ Transfer Result",
lines=12,
max_lines=25,
interactive=False
)
transfer_btn.click(
fn=transfer_sync,
inputs=[history_input, source_dropdown, target_dropdown],
outputs=output
)
# Add examples
with gr.Row():
gr.Examples(
examples=[
[
"User: What is Python programming?\nAssistant: Python is a high-level, interpreted programming language known for its simple syntax and readability. It's widely used in web development, data science, AI, and automation.",
"ChatGPT",
"anthropic"
],
[
'[{"role": "user", "content": "Explain quantum computing in simple terms"}, {"role": "assistant", "content": "Quantum computing uses quantum mechanical phenomena like superposition and entanglement to process information in ways that classical computers cannot."}]',
"Other",
"mistral"
],
[
"Human: Write a haiku about programming\nClaude: Code flows like water\nBugs hide in logic's shadows\nDebug brings the light",
"Claude",
"hyperbolic"
]
],
inputs=[history_input, source_dropdown, target_dropdown],
label="π‘ Try These Examples"
)
return interface
# Main execution
if __name__ == "__main__":
print("π Starting LLM Conversation Transfer Tool...")
# Check if running as MCP server
if len(sys.argv) > 1 and sys.argv[1] == "mcp":
if MCP_AVAILABLE:
print("π§ Running as MCP Server...")
asyncio.run(stdio_server(server))
else:
print("β MCP not available. Install with: pip install mcp")
sys.exit(1)
else:
# Run Gradio interface
print("π Starting Gradio Interface...")
interface = create_interface()
interface.launch(
share=False, # Disable share link
server_name="127.0.0.1", # Use localhost instead of 0.0.0.0
server_port=7860,
show_error=True,
inbrowser=True # Auto-open browser
) |