Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,30 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from tensorflow.keras.models import load_model
|
3 |
-
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
st.title("Skin Cancer Image Classification")
|
7 |
-
st.write("Upload an image and let the model guess whether it is a cancer or not.")
|
8 |
-
|
9 |
-
model = load_model("my_cnn_model.keras")
|
10 |
-
|
11 |
-
def process_image(img):
|
12 |
-
img = img.resize((170,170)) # set the size as 170 x 170 pixel
|
13 |
-
img = np.array(img)
|
14 |
-
img = img / 255.0 # normalized
|
15 |
-
img = np.expand_dims(img, axis=0)
|
16 |
-
return img
|
17 |
-
|
18 |
-
|
19 |
-
file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
20 |
-
|
21 |
-
if file is not None:
|
22 |
-
img = Image.open(file)
|
23 |
-
st.image(img, caption="Uploaded Image")
|
24 |
-
image = process_image(img)
|
25 |
-
|
26 |
-
prediction = model.predict(image)
|
27 |
-
predicted_class = np.argmax(prediction)
|
28 |
-
|
29 |
-
class_names = ["It is NOT Cancer!", "It is
|
30 |
-
st.write(class_names[predicted_class])
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
st.title("Skin Cancer Image Classification")
|
7 |
+
st.write("Upload an image and let the model guess whether it is a cancer or not.")
|
8 |
+
|
9 |
+
model = load_model("my_cnn_model.keras")
|
10 |
+
|
11 |
+
def process_image(img):
|
12 |
+
img = img.resize((170,170)) # set the size as 170 x 170 pixel
|
13 |
+
img = np.array(img)
|
14 |
+
img = img / 255.0 # normalized
|
15 |
+
img = np.expand_dims(img, axis=0)
|
16 |
+
return img
|
17 |
+
|
18 |
+
|
19 |
+
file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
20 |
+
|
21 |
+
if file is not None:
|
22 |
+
img = Image.open(file)
|
23 |
+
st.image(img, caption="Uploaded Image")
|
24 |
+
image = process_image(img)
|
25 |
+
|
26 |
+
prediction = model.predict(image)
|
27 |
+
predicted_class = np.argmax(prediction)
|
28 |
+
|
29 |
+
class_names = ["It is NOT Cancer!", "A melanocytic nevus is usually a noncancerous condition where pigment-producing skin cells group together. It is a type of growth on the skin that contains nevus cells (a type of skin cell). "]
|
30 |
+
st.write(class_names[predicted_class])
|