Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
# Load model from your Hugging Face hub
|
| 5 |
+
model_id = "Varnikasiva/sentiment-classification-bert-mini"
|
| 6 |
+
classifier = pipeline("text-classification", model=model_id)
|
| 7 |
+
|
| 8 |
+
# Gradio interface
|
| 9 |
+
def predict(text):
|
| 10 |
+
result = classifier(text)[0]
|
| 11 |
+
return f"Label: {result['label']} (Score: {round(result['score'], 2)})"
|
| 12 |
+
|
| 13 |
+
gr.Interface(
|
| 14 |
+
fn=predict,
|
| 15 |
+
inputs=gr.Textbox(lines=3, placeholder="Type your text here..."),
|
| 16 |
+
outputs="text",
|
| 17 |
+
title="Sentiment Classification with BERT Mini",
|
| 18 |
+
description="This model detects complex emotions like guilt, sarcasm, happiness, etc."
|
| 19 |
+
).launch()
|