import gradio as gr import pandas as pd import numpy as np from typing import List, Dict, Tuple, Optional from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.memory import ConversationBufferMemory from langchain_community.vectorstores import FAISS from langchain.docstore.document import Document from langchain_huggingface import HuggingFaceEndpoint from langchain.chains import ConversationalRetrievalChain from langchain.prompts import PromptTemplate import os # Configuration MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2" api_token = os.getenv("HF_TOKEN") # Define system message for consistent LLM behavior SYSTEM_MESSAGE = """You are a microcontroller selection expert assistant. Your task is to: 1. Analyze user requirements carefully 2. Compare available microcontrollers based on ALL provided specifications 3. Recommend the best matches with detailed explanations 4. Consider trade-offs between different features 5. Highlight any potential concerns or limitations When making recommendations: - Always mention specific model numbers and their key features - Explain why each recommendation matches the requirements - Compare pros and cons between recommendations - Note any missing specifications that might be important""" # Custom prompt templates CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(""" Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question that captures all relevant context from the conversation. Chat History: {chat_history} Follow Up Input: {question} Standalone question:""") QA_PROMPT = PromptTemplate.from_template(""" {system_message} Context information from microcontroller database: {context} User Query: {question} Provide a detailed response following these steps: 1. Analyze Requirements: Clearly state the key requirements from the query 2. Matching Products: List and compare the best matching microcontrollers 3. Feature Analysis: Detail how each recommended product meets the requirements 4. Trade-offs: Explain any compromises or trade-offs 5. Additional Considerations: Mention any important factors the user should consider Response:""") def validate_excel_format(df: pd.DataFrame) -> bool: """Validate if Excel file has required specifications as columns""" expected_specs = [ 'Product ID', 'Product Title', 'PLP', 'Bit Size', 'cpu', 'Program Memory (KB)', 'Data Flash (KB)', 'RAM (KB)', 'Lead Count (#)', 'Supply Voltage (V)', 'Operating Freq (Max) (MHz)', 'RTC', 'LVD or PVD', 'DMA', 'I/O Ports', 'Timer', 'ADC', 'DAC', 'Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN', 'Human machine interface', 'pkg.Type', 'Temp.Range' ] # Check if at least the essential columns exist essential_specs = ['Product ID', 'Product Title', 'Bit Size', 'cpu'] missing_essential = [col for col in essential_specs if col not in df.columns] if missing_essential: print(f"Missing essential columns: {missing_essential}") return False # Print found and missing columns for debugging found_specs = [col for col in expected_specs if col in df.columns] missing_specs = [col for col in expected_specs if col not in df.columns] print("Found specifications:", found_specs) print("Missing specifications:", missing_specs) return True def normalize_column_name(col_name: str) -> str: """Normalize column names to handle different variations""" # Convert to lowercase and remove special characters normalized = str(col_name).lower().strip() normalized = ''.join(c for c in normalized if c.isalnum() or c.isspace()) # Common variations mapping variations = { 'productid': 'Product ID', 'producttitle': 'Product Title', 'programmemorykb': 'Program Memory (KB)', 'programmemory': 'Program Memory (KB)', 'flashmemory': 'Program Memory (KB)', 'dataflashkb': 'Data Flash (KB)', 'dataflash': 'Data Flash (KB)', 'ramkb': 'RAM (KB)', 'ram': 'RAM (KB)', 'bitsize': 'Bit Size', 'cpucore': 'cpu', 'processor': 'cpu', 'supplyvoltage': 'Supply Voltage (V)', 'voltage': 'Supply Voltage (V)', 'operatingfreq': 'Operating Freq (Max) (MHz)', 'frequency': 'Operating Freq (Max) (MHz)', 'maxfreq': 'Operating Freq (Max) (MHz)', 'leadcount': 'Lead Count (#)', 'pins': 'Lead Count (#)', 'pincount': 'Lead Count (#)', 'interface': 'I/O Ports', 'ioports': 'I/O Ports', 'packagetype': 'pkg.Type', 'package': 'pkg.Type', 'temprange': 'Temp.Range', 'temperature': 'Temp.Range', 'humanmachineinterface': 'Human machine interface', 'hmi': 'Human machine interface' } # Return original if no mapping found return variations.get(normalized.replace(' ', ''), col_name) def validate_and_map_columns(df: pd.DataFrame) -> Tuple[pd.DataFrame, Dict[str, str]]: """Validate and map Excel columns to standard names""" # Create mapping of found columns column_mapping = {} new_columns = [] for col in df.columns: normalized_name = normalize_column_name(col) column_mapping[col] = normalized_name new_columns.append(normalized_name) # Rename columns in DataFrame df.columns = new_columns # Print found specifications for debugging print("Found specifications:", new_columns) return df, column_mapping def clean_excel_data(df: pd.DataFrame) -> pd.DataFrame: """Clean and prepare Excel data with flexible handling""" # Replace various forms of empty/NA values df = df.replace([np.nan, 'N/A', 'NA', '-', 'None', 'none', 'nil', 'NIL'], '') # Numeric columns with their units numeric_specs = { 'Program Memory (KB)': 'KB', 'Data Flash (KB)': 'KB', 'RAM (KB)': 'KB', 'Lead Count (#)': '', 'Supply Voltage (V)': 'V', 'Operating Freq (Max) (MHz)': 'MHz' } # Process each numeric column if it exists for col, unit in numeric_specs.items(): if col in df.columns: # Extract numeric values from string if needed df[col] = df[col].astype(str).str.extract(r'(\d+\.?\d*)').astype(float) # Clean boolean/feature columns feature_cols = ['RTC', 'DMA', 'Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN'] for col in feature_cols: if col in df.columns: df[col] = df[col].astype(str).str.lower() # Map various positive indicators to 'Yes' df[col] = df[col].apply(lambda x: 'Yes' if x in ['yes', 'y', '1', 'true', 'available', 'supported', '✓', '√'] else 'No') return df def process_mc_excel(excel_file: str) -> Tuple[List[Document], Optional[str]]: """Convert microcontroller Excel data to Document objects with flexible handling""" try: print(f"Reading Excel file: {excel_file}") df = pd.read_excel(excel_file) print(f"Excel file loaded. Shape: {df.shape}") # Validate and map columns df, column_mapping = validate_and_map_columns(df) df = clean_excel_data(df) # Define feature groups with optional fields feature_groups = { 'core_specs': { 'title': 'Core Specifications', 'fields': ['Product ID', 'Product Title', 'PLP', 'Bit Size', 'cpu'], 'required': ['Product ID', 'Product Title'] # Minimum required fields }, 'memory': { 'title': 'Memory', 'fields': ['Program Memory (KB)', 'Data Flash (KB)', 'RAM (KB)'], 'required': [] }, 'communication': { 'title': 'Communication Interfaces', 'fields': ['Ethernet', 'USB', 'UART', 'SPI', 'I2C', 'CAN', 'LIN'], 'required': [] }, 'peripherals': { 'title': 'Peripherals', 'fields': ['Timer', 'ADC', 'DAC', 'RTC', 'DMA'], 'required': [] }, 'power': { 'title': 'Power and Performance', 'fields': ['Supply Voltage (V)', 'Operating Freq (Max) (MHz)', 'LVD or PVD'], 'required': [] }, 'physical': { 'title': 'Physical Specifications', 'fields': ['Lead Count (#)', 'pkg.Type', 'Temp.Range'], 'required': [] }, 'interface': { 'title': 'Interfaces', 'fields': ['I/O Ports', 'Human machine interface'], 'required': [] } } # Check for minimum required fields required_fields = set() for group in feature_groups.values(): required_fields.update(group['required']) missing_required = [field for field in required_fields if field not in df.columns] if missing_required: return [], f"Missing essential columns: {', '.join(missing_required)}" documents = [] for idx, row in df.iterrows(): content_parts = [] for group_name, group_info in feature_groups.items(): group_content = [] for field in group_info['fields']: if field in df.columns and pd.notna(row.get(field)) and str(row.get(field)).strip() != '': value = row[field] if isinstance(value, (int, float)): if 'KB' in field: value = f"{value:g} KB" elif 'MHz' in field: value = f"{value:g} MHz" elif 'V' in field: value = f"{value:g}V" else: value = f"{value:g}" group_content.append(f"{field}: {value}") if group_content: content_parts.append(f"{group_info['title']}:\n" + "\n".join(group_content)) # Create content string content = "\n\n".join(content_parts) # Create metadata with available fields metadata = { "source": "excel", "row": idx, "product_id": str(row.get('Product ID', '')), "product_title": str(row.get('Product Title', '')), } # Add optional metadata if available optional_metadata = { "bit_size": "Bit Size", "cpu": "cpu", "memory": "Program Memory (KB)", "interfaces": ["USB", "Ethernet", "CAN", "SPI", "I2C"] } for meta_key, field in optional_metadata.items(): if isinstance(field, list): # Handle interface list metadata[meta_key] = [intf for intf in field if intf in df.columns and row.get(intf) == 'Yes'] elif field in df.columns: value = row.get(field) if pd.notna(value) and str(value).strip() != '': if field == 'Program Memory (KB)': metadata[meta_key] = f"{value} KB" else: metadata[meta_key] = str(value) doc = Document(page_content=content, metadata=metadata) documents.append(doc) if not documents: return [], "No valid microcontroller data found in Excel file." print(f"Successfully processed {len(documents)} microcontrollers") return documents, None except Exception as e: import traceback print("Excel processing error:") print(traceback.format_exc()) return [], f"Error processing Excel file: {str(e)}" def create_vector_db(documents: List[Document]) -> Optional[FAISS]: """Create FAISS vector database with error handling""" try: text_splitter = RecursiveCharacterTextSplitter( chunk_size=2048, # Larger chunk size for complete spec retention chunk_overlap=200, separators=["\n\n", "\n", ". ", ", ", " "] ) splits = text_splitter.split_documents(documents) embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-mpnet-base-v2" ) return FAISS.from_documents(splits, embeddings) except Exception as e: print(f"Error creating vector database: {str(e)}") return None def initialize_llm_chain(vector_db): """Initialize LLM chain with enhanced prompting""" try: llm = HuggingFaceEndpoint( repo_id=MODEL_NAME, huggingfacehub_api_token=api_token, temperature=0.3, max_new_tokens=2048, top_k=5, repetition_penalty=1.1 ) memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever( search_type="mmr", search_kwargs={ "k": 5, "fetch_k": 8, "lambda_mult": 0.7 } ) qa_prompt = QA_PROMPT.partial(system_message=SYSTEM_MESSAGE) chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=retriever, memory=memory, return_source_documents=True, condense_question_prompt=CONDENSE_QUESTION_PROMPT, combine_docs_chain_kwargs={'prompt': qa_prompt} ) return chain except Exception as e: print(f"Error initializing LLM chain: {str(e)}") return None def format_mc_response(source_doc: Document) -> str: """Format microcontroller source documents for display with robust metadata handling""" try: if source_doc.metadata.get('source') == 'excel': # Get metadata with default values for missing fields product_title = source_doc.metadata.get('product_title', 'N/A') cpu = source_doc.metadata.get('cpu', 'Not specified') memory = source_doc.metadata.get('memory', 'Not specified') formatted_response = ( f"Product: {product_title}\n" f"CPU: {cpu}\n" f"Memory: {memory}\n\n" f"Specifications:\n{source_doc.page_content}" ) return formatted_response return source_doc.page_content except Exception as e: # Fallback to returning just the page content if there's any error print(f"Error formatting response: {str(e)}") return source_doc.page_content def process_query(qa_chain, message: str, history: List) -> Tuple[str, List[str]]: """Process user query with enhanced context handling""" try: # Add requirement analysis to user query enhanced_query = f"""Analyze the following microcontroller requirements and provide detailed recommendations: User Requirements: {message} Please consider: 1. Core specifications and performance requirements 2. Memory requirements and constraints 3. Communication interfaces needed 4. Peripheral requirements 5. Power and operating conditions 6. Physical and environmental constraints Provide a detailed comparison of the best matching microcontrollers.""" response = qa_chain({ "question": enhanced_query, "chat_history": [(hist[0], hist[1]) for hist in history] }) sources = response["source_documents"][:3] source_contents = [format_mc_response(source) for source in sources] return response["answer"], source_contents except Exception as e: return f"Error processing query: {str(e)}", [] def create_interface(): """Create a Gradio interface with improved horizontal alignment and block sizes.""" with gr.Blocks(css=""" #main-title { color: #00509e; font-family: 'Arial', sans-serif; text-align: center; margin-bottom: 20px; } #description { color: #333; font-family: 'Arial', sans-serif; text-align: center; margin-bottom: 30px; } #initialize-btn { background-color: #00509e; color: white; border: none; padding: 5px 15px; font-size: 14px; } #initialize-btn:hover { background-color: #003f7f; } .gradio-row { margin-bottom: 20px; } """) as demo: # Title and description gr.HTML("
Select a sample file or upload your database. Then describe your requirements for tailored recommendations.
") # File selection section (sample and upload) with gr.Row(elem_id="file-section", equal_height=True): with gr.Column(scale=1): sample_file = gr.Dropdown( label="Sample Files", choices=["test_data.xlsx"], value="test_data.xlsx" ) with gr.Column(scale=1): excel_file = gr.File( label="Upload Microcontroller Database (Excel)", file_types=[".xlsx", ".xls"], ) # Initialization button and status with gr.Row(equal_height=True): initialize_btn = gr.Button("Initialize System", elem_id="initialize-btn") status = gr.Textbox(label="Status", value="Not initialized", interactive=False) # Chat section with gr.Row(equal_height=True): chatbot = gr.Chatbot(label="Chat", height=400) # Query input and buttons with gr.Row(equal_height=True): query = gr.Textbox( placeholder="Describe your microcontroller requirements (e.g., '32-bit MCU with USB support and 256KB flash memory')", label="Query", lines=3 ) with gr.Row(equal_height=True): submit_btn = gr.Button("Submit Query") clear_btn = gr.Button("Clear Chat") # State handlers vector_db_state = gr.State() qa_chain_state = gr.State() def init_system(file, sample): if not file and not sample: return None, None, "Please upload an Excel file or select a sample." file_path = file.name if file else sample docs, error = process_mc_excel(file_path) # Pass Excel file path here if error: return None, None, error vector_db = create_vector_db(docs) if not vector_db: return None, None, "Failed to create vector database." qa_chain = initialize_llm_chain(vector_db) if not qa_chain: return None, None, "Failed to initialize LLM chain." return vector_db, qa_chain, "System initialized successfully!" def handle_query(qa_chain, message, history): if qa_chain is None: return history + [("Error", "Please initialize the system first.")], "" answer, sources = process_query(qa_chain, message, history) # Include sources in the answer if sources: answer += "\n\nRelevant Products:\n" + "\n\n".join(sources) return history + [(message, answer)], "" # Button actions initialize_btn.click( init_system, inputs=[excel_file, sample_file], outputs=[vector_db_state, qa_chain_state, status] ) submit_btn.click( handle_query, inputs=[qa_chain_state, query, chatbot], outputs=[chatbot, query] ) clear_btn.click( lambda: ([], ""), inputs=[], outputs=[chatbot, query] ) return demo if __name__ == "__main__": demo = create_interface() demo.launch(debug=True)