import gradio as gr import torch import numpy as np from PIL import Image import matplotlib.pyplot as plt import cv2 from huggingface_hub import hf_hub_download from depth_anything_v2.dpt import DepthAnythingV2 # Model loading (as before) DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' model_configs = { 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, } encoder = 'vitl' model = DepthAnythingV2(**model_configs[encoder]) model_path = hf_hub_download( repo_id="depth-anything/Depth-Anything-V2-Large", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model" ) state_dict = torch.load(model_path, map_location="cpu") model.load_state_dict(state_dict) model = model.to(DEVICE).eval() CMAP = plt.get_cmap('Spectral_r') def infer(image: np.ndarray): # Run depth model with torch.no_grad(): depth = model.infer_image(image[:, :, ::-1]) # Grayscale map (normalize to 0..255) depth_norm = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 depth_norm = depth_norm.astype(np.uint8) gray = Image.fromarray(depth_norm) # Colored map colored = (CMAP(depth_norm)[:, :, :3] * 255).astype(np.uint8) color = Image.fromarray(colored) # Edge map using Canny on the original image (convert to grayscale first) image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) if image.shape[2] == 3 else image edges = cv2.Canny(image_gray, 100, 200) # threshold1/2 can be tuned edge_img = Image.fromarray(edges) return gray, color, edge_img iface = gr.Interface( fn=infer, inputs=gr.Image(type="numpy", label="Input Image"), outputs=[ gr.Image(label="Grayscale Depth"), gr.Image(label="Colored Depth"), gr.Image(label="Canny Edge Map"), ], title="Depth Anything V2 (with Colored Output + Canny Edges)", description="Upload an image to get depth (gray, color), plus Canny edge map." ) iface.launch()