Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
from depth_anything_v2.dpt import DepthAnythingV2
|
5 |
|
6 |
-
def dummy_infer(img):
|
7 |
-
return 255 - img
|
8 |
-
|
9 |
-
# --- LOAD THE MODEL, BUT DON'T USE IT ---
|
10 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
model_configs = {
|
12 |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
@@ -21,7 +18,13 @@ model_path = hf_hub_download(
|
|
21 |
state_dict = torch.load(model_path, map_location="cpu")
|
22 |
model.load_state_dict(state_dict)
|
23 |
model = model.to(DEVICE).eval()
|
24 |
-
# --- END MODEL LOADING ---
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import numpy as np
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from depth_anything_v2.dpt import DepthAnythingV2
|
6 |
|
|
|
|
|
|
|
|
|
7 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
8 |
model_configs = {
|
9 |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
|
|
18 |
state_dict = torch.load(model_path, map_location="cpu")
|
19 |
model.load_state_dict(state_dict)
|
20 |
model = model.to(DEVICE).eval()
|
|
|
21 |
|
22 |
+
def infer(img):
|
23 |
+
with torch.no_grad():
|
24 |
+
depth = model.infer_image(img[:, :, ::-1]) # BGR to RGB if needed
|
25 |
+
# Normalize to 0-255 and convert to uint8
|
26 |
+
depth_norm = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
27 |
+
return depth_norm.astype(np.uint8)
|
28 |
+
|
29 |
+
iface = gr.Interface(fn=infer, inputs=gr.Image(type="numpy"), outputs=gr.Image())
|
30 |
iface.launch()
|