Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,27 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
return 255 - img
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
5 |
+
|
6 |
+
def dummy_infer(img):
|
7 |
return 255 - img
|
8 |
+
|
9 |
+
# --- LOAD THE MODEL, BUT DON'T USE IT ---
|
10 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
+
model_configs = {
|
12 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
|
13 |
+
}
|
14 |
+
encoder = 'vitl'
|
15 |
+
model = DepthAnythingV2(**model_configs[encoder])
|
16 |
+
model_path = hf_hub_download(
|
17 |
+
repo_id="depth-anything/Depth-Anything-V2-Large",
|
18 |
+
filename=f"depth_anything_v2_{encoder}.pth",
|
19 |
+
repo_type="model"
|
20 |
+
)
|
21 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
22 |
+
model.load_state_dict(state_dict)
|
23 |
+
model = model.to(DEVICE).eval()
|
24 |
+
# --- END MODEL LOADING ---
|
25 |
+
|
26 |
+
iface = gr.Interface(fn=dummy_infer, inputs=gr.Image(type="numpy"), outputs=gr.Image())
|
27 |
+
iface.launch()
|