Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import numpy as np | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
import matplotlib.pyplot as plt | |
from depth_anything_v2.dpt import DepthAnythingV2 | |
# Load model as before | |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model_configs = { | |
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, | |
} | |
encoder = 'vitl' | |
model = DepthAnythingV2(**model_configs[encoder]) | |
model_path = hf_hub_download( | |
repo_id="depth-anything/Depth-Anything-V2-Large", | |
filename=f"depth_anything_v2_{encoder}.pth", | |
repo_type="model" | |
) | |
state_dict = torch.load(model_path, map_location="cpu") | |
model.load_state_dict(state_dict) | |
model = model.to(DEVICE).eval() | |
# Use a matplotlib colormap | |
CMAP = plt.get_cmap('Spectral_r') | |
def infer(image: np.ndarray): | |
# 1. Run the model (BGR to RGB if needed) | |
with torch.no_grad(): | |
depth = model.infer_image(image[:, :, ::-1]) | |
# 2. Grayscale map (normalize to 0..255) | |
depth_norm = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
depth_norm = depth_norm.astype(np.uint8) | |
gray = Image.fromarray(depth_norm) | |
# 3. Color map | |
colored = (CMAP(depth_norm)[:, :, :3] * 255).astype(np.uint8) | |
color = Image.fromarray(colored) | |
return gray, color | |
iface = gr.Interface( | |
fn=infer, | |
inputs=gr.Image(type="numpy", label="Input Image"), | |
outputs=[ | |
gr.Image(label="Grayscale Depth"), | |
gr.Image(label="Colored Depth"), | |
], | |
title="Depth Anything V2 (Minimal, with Colored Output)", | |
description="Upload an image, get depth as grayscale and colored." | |
) | |
iface.launch() | |