import torch import spaces import re from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr import os import logging from unsloth import FastLanguageModel import subprocess logging.basicConfig( level=logging.DEBUG, # Set the logging level to DEBUG to capture all messages format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler() # Logs will be output to the console ] ) logger = logging.getLogger(__name__) logger.info("HELLO WORLD...") READ_HF = os.environ["read_hf"] alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" string = ''' You are an AI assistant tasked with managing inventory based on user instructions. You must meticulously analyze each user request to determine the appropriate action and execute it with the correct parameters. **Here's your step-by-step thought process:** 1. **Identify the Function:** Carefully examine the user's input to determine the primary function they want to perform. The available functions are: - `transaction`: Record a new item transaction. - `last n days transactions`: Retrieve transaction records within a specific timeframe. - `view inventory`: View inventory details for a specific category and risk level. - `generate report`: Generate an inventory report. 2. **Extract Parameters:** Once you've identified the function, carefully extract the necessary parameters from the user's input. Each function requires specific parameters: **`transaction`:** - `ItemName`: (string) **Must be an exact match from the provided Item List.** - `ItemQt`: (integer) The quantity of the item. - `Type`: (string) "sale", "purchase", or "return". **`last n days transactions`:** - `ItemCategory`: (string) **Must be from the provided Item Category List.** - `Duration`: (integer) Number of days (convert weeks, months, years to days). **`view inventory`:** - `ItemCategory`: (string) **Must be from the provided Item Category List.** - `RiskType`: (string) "overstock", "understock", or "Null" (if risk inventory is not asked), or "All" for both overstock and understock. **`generate report`:** - `ItemCategory`: (string) **Must be from the provided Item Category List.** - `Duration`: (integer) Number of days (convert weeks, months, years to days). - `ReportType`: (string): "profit", "revenue", "inventory", or "Null" (for all reports). 3. **Validate Inputs:** Before proceeding, validate the extracted parameters: - **ItemName:** Ensure the `ItemName` is an exact match from the provided Item List. - **ItemCategory:** Ensure the `ItemCategory` is from the provided Category List. - **Data Types:** Verify that all parameters are of the correct data type (string or integer). 4. **Output in JSON:** Always format your response as a JSON object. **Additional Notes:** - Pay close attention to the case and spelling of function names and parameters. Category List : ["Dairy & Eggs", "Beverages & Snacks", "Cleaning & Hygiene", "Grains & Staples", "Personal Care", "Other"] ''' @spaces.GPU() def chunk_it(inventory_list, user_input_text): # Check for CUDA and NVIDIA-related errors try: # Check for GPU devices device_count = torch.cuda.device_count() logger.info(f"Number of GPU devices: {device_count}") if device_count == 0: raise RuntimeError("No GPU devices found.") # Raise an error if no GPUs are detected # Check CUDA version using subprocess process = subprocess.run(['nvcc', '--version'], capture_output=True, text=True) cuda_version = process.stdout.strip() logger.info(f"CUDA version: {cuda_version}") if 'not found' in cuda_version.lower(): raise RuntimeError("CUDA not found.") # Raise an error if CUDA is not found # Load model and tokenizer (your original code) model, tokenizer = FastLanguageModel.from_pretrained( model_name = "VanguardAI/CoT_multi_llama_LoRA_4bit", max_seq_length = 2048, dtype = torch.bfloat16, load_in_4bit = True, token = READ_HF ) logger.info("Model and tokenizer loaded.") except Exception as e: logger.error(f"Failed to load model and tokenizer: {e}") raise logger.info("Enabling native 2x faster inference...") try: FastLanguageModel.for_inference(model) logger.info("Inference enabled.") except Exception as e: logger.error(f"Failed to enable native inference: {e}") raise formatted_prompt = alpaca_prompt.format( string + inventory_list, # instruction user_input_text, # input "", # output - leave this blank for generation! ) logger.debug(f"Formatted prompt: {formatted_prompt}") try: inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda") logger.debug(f"Tokenized inputs: {inputs}") except Exception as e: logger.error(f"Failed to tokenize inputs: {e}") raise logger.info("Generating output...") try: outputs = model.generate(**inputs, max_new_tokens=216, use_cache=True) logger.info("Output generated.") except Exception as e: logger.error(f"Failed to generate output: {e}") raise try: reply = tokenizer.batch_decode(outputs, skip_special_tokens=True) logger.debug(f"Decoded output: {reply}") except Exception as e: logger.error(f"Failed to decode output: {e}") raise # pattern = r"### Response:\n(.*?)<\|end_of_text\|>" # match = re.search(pattern, reply[0], re.DOTALL) # reply = match.group(1).strip() logger.debug(f"Final reply: {reply}") return reply # Interface for inputs iface = gr.Interface( fn=chunk_it, inputs=[ gr.Textbox(label="user_input_text", lines=3), gr.Textbox(label="inventory_list", lines=5) ], outputs=gr.Textbox(label="output", lines=23), title="Testing", ) logger.info("Launching Gradio interface...") try: iface.launch(inline=False) logger.info("Gradio interface launched.") except Exception as e: logger.error(f"Failed to launch Gradio interface: {e}")