Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,21 +8,16 @@ from transformers import AutoModel, AutoTokenizer
|
|
8 |
from diffusers import StableDiffusion3Pipeline
|
9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
10 |
import soundfile as sf
|
11 |
-
from langchain.agents import AgentExecutor, create_react_agent, initialize_agent, Tool
|
12 |
-
from langchain.agents import AgentType
|
13 |
from langchain_groq import ChatGroq
|
14 |
-
from langchain.prompts import PromptTemplate
|
15 |
from PIL import Image
|
16 |
from tavily import TavilyClient
|
17 |
-
import requests
|
18 |
-
from huggingface_hub import hf_hub_download
|
19 |
-
from safetensors.torch import load_file
|
20 |
from langchain.schema import AIMessage
|
21 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
22 |
from langchain_community.vectorstores import FAISS
|
23 |
from langchain_community.document_loaders import TextLoader
|
24 |
from langchain.text_splitter import CharacterTextSplitter
|
25 |
from langchain.chains import RetrievalQA
|
|
|
26 |
|
27 |
# Initialize models and clients
|
28 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
@@ -53,54 +48,46 @@ def play_voice_output(response):
|
|
53 |
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
|
54 |
return "output.wav"
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
def _run(self, query: str) -> str:
|
62 |
-
print("Executing NumpyCodeCalculator tool")
|
63 |
-
try:
|
64 |
-
local_dict = {"np": np}
|
65 |
-
exec(query, local_dict)
|
66 |
-
result = local_dict.get("result", "No result found")
|
67 |
-
return str(result)
|
68 |
-
except Exception as e:
|
69 |
-
return f"Error: {e}"
|
70 |
-
|
71 |
-
# Web Search Tool
|
72 |
-
class WebSearch(Tool):
|
73 |
-
name = "Web"
|
74 |
-
description = "Useful for advanced web searching beyond general information"
|
75 |
-
|
76 |
-
def _run(self, query: str) -> str:
|
77 |
-
print("Executing WebSearch tool")
|
78 |
-
answer = tavily_client.qna_search(query=query)
|
79 |
-
return answer
|
80 |
-
|
81 |
-
# Image Generation Tool
|
82 |
-
class ImageGeneration(Tool):
|
83 |
-
name = "Image"
|
84 |
-
description = "Useful for generating images based on text descriptions"
|
85 |
-
|
86 |
-
def _run(self, query: str) -> str:
|
87 |
-
print("Executing ImageGeneration tool")
|
88 |
-
image = pipe(
|
89 |
-
query,
|
90 |
-
negative_prompt="",
|
91 |
-
num_inference_steps=15,
|
92 |
-
guidance_scale=7.0,
|
93 |
-
).images[0]
|
94 |
-
image.save("output.jpg")
|
95 |
-
return "output.jpg"
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
def __init__(self, document):
|
103 |
-
super().__init__()
|
104 |
self.document = document
|
105 |
self.qa_chain = self._setup_qa_chain()
|
106 |
|
@@ -120,79 +107,94 @@ class DocumentQuestionAnswering(Tool):
|
|
120 |
)
|
121 |
return qa_chain
|
122 |
|
123 |
-
def
|
124 |
print("Executing DocumentQuestionAnswering tool")
|
125 |
response = self.qa_chain.run(query)
|
126 |
return str(response)
|
127 |
|
128 |
-
|
129 |
-
# Function to handle different input types and choose the right tool
|
130 |
def handle_input(user_prompt, image=None, audio=None, websearch=False, document=None):
|
131 |
print(f"Handling input: {user_prompt}")
|
132 |
|
133 |
# Initialize the LLM
|
134 |
llm = ChatGroq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
|
135 |
|
136 |
-
#
|
137 |
-
|
138 |
-
|
139 |
-
# Add Image Generation Tool
|
140 |
-
tools.append(ImageGeneration())
|
141 |
-
|
142 |
-
# Add Calculator Tool
|
143 |
-
tools.append(NumpyCodeCalculator())
|
144 |
-
|
145 |
-
# Add Web Search Tool if enabled
|
146 |
-
if websearch:
|
147 |
-
tools.append(WebSearch())
|
148 |
-
|
149 |
-
# Add Document QA Tool if document is provided
|
150 |
-
if document:
|
151 |
-
tools.append(DocumentQuestionAnswering(document))
|
152 |
-
|
153 |
-
# Check if any tools are mentioned in the user prompt
|
154 |
-
requires_tool = any([tool.name.lower() in user_prompt.lower() for tool in tools])
|
155 |
-
|
156 |
-
# Handle different input scenarios
|
157 |
-
if image:
|
158 |
-
print("Processing image input")
|
159 |
-
image = Image.open(image).convert('RGB')
|
160 |
-
messages = [{"role": "user", "content": [image, user_prompt]}]
|
161 |
-
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
162 |
-
elif audio:
|
163 |
print("Processing audio input")
|
164 |
transcription = client.audio.transcriptions.create(
|
165 |
file=(audio.name, audio.read()),
|
166 |
model="whisper-large-v3"
|
167 |
)
|
168 |
user_prompt = transcription.text
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
else:
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
191 |
response = llm.call(query=user_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
return response
|
194 |
|
195 |
-
|
196 |
def create_ui():
|
197 |
with gr.Blocks(css="""
|
198 |
/* Overall Styling */
|
@@ -403,40 +405,6 @@ def create_ui():
|
|
403 |
|
404 |
return demo
|
405 |
|
406 |
-
# Main interface function
|
407 |
-
@spaces.GPU(duration=720)
|
408 |
-
def main_interface(user_prompt, image=None, audio=None, voice_only=False, websearch=False, document=None):
|
409 |
-
print("Starting main_interface function")
|
410 |
-
vqa_model.to(device='cuda', dtype=torch.bfloat16)
|
411 |
-
tts_model.to("cuda")
|
412 |
-
pipe.to("cuda")
|
413 |
-
|
414 |
-
print(f"user_prompt: {user_prompt}, image: {image}, audio: {audio}, voice_only: {voice_only}, websearch: {websearch}, document: {document}")
|
415 |
-
|
416 |
-
try:
|
417 |
-
response = handle_input(user_prompt, image=image, audio=audio, websearch=websearch, document=document)
|
418 |
-
print("handle_input function executed successfully")
|
419 |
-
except Exception as e:
|
420 |
-
print(f"Error in handle_input: {e}")
|
421 |
-
response = "Error occurred during processing."
|
422 |
-
|
423 |
-
if voice_only:
|
424 |
-
try:
|
425 |
-
transcription = client.audio.transcriptions.create(
|
426 |
-
file=("input.wav", open("input.wav", "rb").read()),
|
427 |
-
model="whisper-large-v3"
|
428 |
-
)
|
429 |
-
user_prompt = transcription.text
|
430 |
-
response = handle_input(user_prompt)
|
431 |
-
audio_output = play_voice_output(response)
|
432 |
-
print("play_voice_output function executed successfully")
|
433 |
-
return "Response generated.", audio_output
|
434 |
-
except Exception as e:
|
435 |
-
print(f"Error in play_voice_output: {e}")
|
436 |
-
return "Error occurred during voice output.", None
|
437 |
-
else:
|
438 |
-
return response, None
|
439 |
-
|
440 |
# Launch the UI
|
441 |
demo = create_ui()
|
442 |
demo.launch()
|
|
|
8 |
from diffusers import StableDiffusion3Pipeline
|
9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
10 |
import soundfile as sf
|
|
|
|
|
11 |
from langchain_groq import ChatGroq
|
|
|
12 |
from PIL import Image
|
13 |
from tavily import TavilyClient
|
|
|
|
|
|
|
14 |
from langchain.schema import AIMessage
|
15 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
16 |
from langchain_community.vectorstores import FAISS
|
17 |
from langchain_community.document_loaders import TextLoader
|
18 |
from langchain.text_splitter import CharacterTextSplitter
|
19 |
from langchain.chains import RetrievalQA
|
20 |
+
import json
|
21 |
|
22 |
# Initialize models and clients
|
23 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
|
|
48 |
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
|
49 |
return "output.wav"
|
50 |
|
51 |
+
# Function to classify user input using LLM
|
52 |
+
def classify_function(user_prompt):
|
53 |
+
prompt = f"""
|
54 |
+
You are a function classifier AI assistant. You are given a user input and you need to classify it into one of the following functions:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
- `image_generation`: If the user wants to generate an image.
|
57 |
+
- `image_description`: If the user wants to describe an image.
|
58 |
+
- `document_summarization`: If the user wants to summarize a document.
|
59 |
+
- `text_to_text`: If the user wants a text-based response.
|
60 |
+
|
61 |
+
Respond with a JSON object containing only the chosen function. For example:
|
62 |
+
|
63 |
+
```json
|
64 |
+
{{"function": "image_generation"}}
|
65 |
+
```
|
66 |
|
67 |
+
User input: {user_prompt}
|
68 |
+
"""
|
69 |
+
|
70 |
+
chat_completion = client.chat.completions.create(
|
71 |
+
messages=[
|
72 |
+
{
|
73 |
+
"role": "user",
|
74 |
+
"content": prompt,
|
75 |
+
}
|
76 |
+
],
|
77 |
+
model="llama3-8b-8192",
|
78 |
+
)
|
79 |
+
|
80 |
+
try:
|
81 |
+
response = json.loads(chat_completion.choices[0].message.content)
|
82 |
+
function = response.get("function")
|
83 |
+
return function
|
84 |
+
except json.JSONDecodeError:
|
85 |
+
print(f"Error decoding JSON: {chat_completion.choices[0].message.content}")
|
86 |
+
return "text_to_text" # Default to text-to-text if JSON parsing fails
|
87 |
+
|
88 |
+
# Document Question Answering Tool
|
89 |
+
class DocumentQuestionAnswering:
|
90 |
def __init__(self, document):
|
|
|
91 |
self.document = document
|
92 |
self.qa_chain = self._setup_qa_chain()
|
93 |
|
|
|
107 |
)
|
108 |
return qa_chain
|
109 |
|
110 |
+
def run(self, query: str) -> str:
|
111 |
print("Executing DocumentQuestionAnswering tool")
|
112 |
response = self.qa_chain.run(query)
|
113 |
return str(response)
|
114 |
|
115 |
+
# Function to handle different input types and choose the right pipeline
|
|
|
116 |
def handle_input(user_prompt, image=None, audio=None, websearch=False, document=None):
|
117 |
print(f"Handling input: {user_prompt}")
|
118 |
|
119 |
# Initialize the LLM
|
120 |
llm = ChatGroq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
|
121 |
|
122 |
+
# Handle voice-only mode
|
123 |
+
if audio:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
print("Processing audio input")
|
125 |
transcription = client.audio.transcriptions.create(
|
126 |
file=(audio.name, audio.read()),
|
127 |
model="whisper-large-v3"
|
128 |
)
|
129 |
user_prompt = transcription.text
|
130 |
+
response = llm.call(query=user_prompt)
|
131 |
+
audio_output = play_voice_output(response)
|
132 |
+
return "Response generated.", audio_output
|
133 |
+
|
134 |
+
# Handle websearch mode
|
135 |
+
if websearch:
|
136 |
+
print("Executing Web Search")
|
137 |
+
answer = tavily_client.qna_search(query=user_prompt)
|
138 |
+
return answer, None
|
139 |
+
|
140 |
+
# Classify user input using LLM
|
141 |
+
function = classify_function(user_prompt)
|
142 |
+
|
143 |
+
# Handle different functions
|
144 |
+
if function == "image_generation":
|
145 |
+
print("Executing Image Generation")
|
146 |
+
image = pipe(
|
147 |
+
user_prompt,
|
148 |
+
negative_prompt="",
|
149 |
+
num_inference_steps=15,
|
150 |
+
guidance_scale=7.0,
|
151 |
+
).images[0]
|
152 |
+
image.save("output.jpg")
|
153 |
+
return "output.jpg", None
|
154 |
+
|
155 |
+
elif function == "image_description":
|
156 |
+
print("Executing Image Description")
|
157 |
+
if image:
|
158 |
+
image = Image.open(image).convert('RGB')
|
159 |
+
messages = [{"role": "user", "content": [image, user_prompt]}]
|
160 |
+
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
161 |
+
return response, None
|
162 |
else:
|
163 |
+
return "Please upload an image.", None
|
164 |
+
|
165 |
+
elif function == "document_summarization":
|
166 |
+
print("Executing Document Summarization")
|
167 |
+
if document:
|
168 |
+
document_qa = DocumentQuestionAnswering(document)
|
169 |
+
response = document_qa.run(user_prompt)
|
170 |
+
return response, None
|
171 |
+
else:
|
172 |
+
return "Please upload a document.", None
|
173 |
+
|
174 |
+
else: # function == "text_to_text"
|
175 |
+
print("Executing Text-to-Text")
|
176 |
response = llm.call(query=user_prompt)
|
177 |
+
return response, None
|
178 |
+
|
179 |
+
# Main interface function
|
180 |
+
@spaces.GPU(duration=720)
|
181 |
+
def main_interface(user_prompt, image=None, audio=None, voice_only=False, websearch=False, document=None):
|
182 |
+
print("Starting main_interface function")
|
183 |
+
vqa_model.to(device='cuda', dtype=torch.bfloat16)
|
184 |
+
tts_model.to("cuda")
|
185 |
+
pipe.to("cuda")
|
186 |
+
|
187 |
+
print(f"user_prompt: {user_prompt}, image: {image}, audio: {audio}, voice_only: {voice_only}, websearch: {websearch}, document: {document}")
|
188 |
+
|
189 |
+
try:
|
190 |
+
response = handle_input(user_prompt, image=image, audio=audio, websearch=websearch, document=document)
|
191 |
+
print("handle_input function executed successfully")
|
192 |
+
except Exception as e:
|
193 |
+
print(f"Error in handle_input: {e}")
|
194 |
+
response = "Error occurred during processing."
|
195 |
|
196 |
return response
|
197 |
|
|
|
198 |
def create_ui():
|
199 |
with gr.Blocks(css="""
|
200 |
/* Overall Styling */
|
|
|
405 |
|
406 |
return demo
|
407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
# Launch the UI
|
409 |
demo = create_ui()
|
410 |
demo.launch()
|