Update app.py
Browse files
app.py
CHANGED
|
@@ -8,21 +8,16 @@ from transformers import AutoModel, AutoTokenizer
|
|
| 8 |
from diffusers import StableDiffusion3Pipeline
|
| 9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 10 |
import soundfile as sf
|
| 11 |
-
from langchain.agents import AgentExecutor, create_react_agent, initialize_agent, Tool
|
| 12 |
-
from langchain.agents import AgentType
|
| 13 |
from langchain_groq import ChatGroq
|
| 14 |
-
from langchain.prompts import PromptTemplate
|
| 15 |
from PIL import Image
|
| 16 |
from tavily import TavilyClient
|
| 17 |
-
import requests
|
| 18 |
-
from huggingface_hub import hf_hub_download
|
| 19 |
-
from safetensors.torch import load_file
|
| 20 |
from langchain.schema import AIMessage
|
| 21 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 22 |
from langchain_community.vectorstores import FAISS
|
| 23 |
from langchain_community.document_loaders import TextLoader
|
| 24 |
from langchain.text_splitter import CharacterTextSplitter
|
| 25 |
from langchain.chains import RetrievalQA
|
|
|
|
| 26 |
|
| 27 |
# Initialize models and clients
|
| 28 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
|
@@ -53,54 +48,46 @@ def play_voice_output(response):
|
|
| 53 |
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
|
| 54 |
return "output.wav"
|
| 55 |
|
| 56 |
-
#
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
def _run(self, query: str) -> str:
|
| 62 |
-
print("Executing NumpyCodeCalculator tool")
|
| 63 |
-
try:
|
| 64 |
-
local_dict = {"np": np}
|
| 65 |
-
exec(query, local_dict)
|
| 66 |
-
result = local_dict.get("result", "No result found")
|
| 67 |
-
return str(result)
|
| 68 |
-
except Exception as e:
|
| 69 |
-
return f"Error: {e}"
|
| 70 |
-
|
| 71 |
-
# Web Search Tool
|
| 72 |
-
class WebSearch(Tool):
|
| 73 |
-
name = "Web"
|
| 74 |
-
description = "Useful for advanced web searching beyond general information"
|
| 75 |
-
|
| 76 |
-
def _run(self, query: str) -> str:
|
| 77 |
-
print("Executing WebSearch tool")
|
| 78 |
-
answer = tavily_client.qna_search(query=query)
|
| 79 |
-
return answer
|
| 80 |
-
|
| 81 |
-
# Image Generation Tool
|
| 82 |
-
class ImageGeneration(Tool):
|
| 83 |
-
name = "Image"
|
| 84 |
-
description = "Useful for generating images based on text descriptions"
|
| 85 |
-
|
| 86 |
-
def _run(self, query: str) -> str:
|
| 87 |
-
print("Executing ImageGeneration tool")
|
| 88 |
-
image = pipe(
|
| 89 |
-
query,
|
| 90 |
-
negative_prompt="",
|
| 91 |
-
num_inference_steps=15,
|
| 92 |
-
guidance_scale=7.0,
|
| 93 |
-
).images[0]
|
| 94 |
-
image.save("output.jpg")
|
| 95 |
-
return "output.jpg"
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
def __init__(self, document):
|
| 103 |
-
super().__init__()
|
| 104 |
self.document = document
|
| 105 |
self.qa_chain = self._setup_qa_chain()
|
| 106 |
|
|
@@ -120,79 +107,94 @@ class DocumentQuestionAnswering(Tool):
|
|
| 120 |
)
|
| 121 |
return qa_chain
|
| 122 |
|
| 123 |
-
def
|
| 124 |
print("Executing DocumentQuestionAnswering tool")
|
| 125 |
response = self.qa_chain.run(query)
|
| 126 |
return str(response)
|
| 127 |
|
| 128 |
-
|
| 129 |
-
# Function to handle different input types and choose the right tool
|
| 130 |
def handle_input(user_prompt, image=None, audio=None, websearch=False, document=None):
|
| 131 |
print(f"Handling input: {user_prompt}")
|
| 132 |
|
| 133 |
# Initialize the LLM
|
| 134 |
llm = ChatGroq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
|
| 135 |
|
| 136 |
-
#
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
# Add Image Generation Tool
|
| 140 |
-
tools.append(ImageGeneration())
|
| 141 |
-
|
| 142 |
-
# Add Calculator Tool
|
| 143 |
-
tools.append(NumpyCodeCalculator())
|
| 144 |
-
|
| 145 |
-
# Add Web Search Tool if enabled
|
| 146 |
-
if websearch:
|
| 147 |
-
tools.append(WebSearch())
|
| 148 |
-
|
| 149 |
-
# Add Document QA Tool if document is provided
|
| 150 |
-
if document:
|
| 151 |
-
tools.append(DocumentQuestionAnswering(document))
|
| 152 |
-
|
| 153 |
-
# Check if any tools are mentioned in the user prompt
|
| 154 |
-
requires_tool = any([tool.name.lower() in user_prompt.lower() for tool in tools])
|
| 155 |
-
|
| 156 |
-
# Handle different input scenarios
|
| 157 |
-
if image:
|
| 158 |
-
print("Processing image input")
|
| 159 |
-
image = Image.open(image).convert('RGB')
|
| 160 |
-
messages = [{"role": "user", "content": [image, user_prompt]}]
|
| 161 |
-
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
| 162 |
-
elif audio:
|
| 163 |
print("Processing audio input")
|
| 164 |
transcription = client.audio.transcriptions.create(
|
| 165 |
file=(audio.name, audio.read()),
|
| 166 |
model="whisper-large-v3"
|
| 167 |
)
|
| 168 |
user_prompt = transcription.text
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
else:
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
|
|
|
| 191 |
response = llm.call(query=user_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
return response
|
| 194 |
|
| 195 |
-
|
| 196 |
def create_ui():
|
| 197 |
with gr.Blocks(css="""
|
| 198 |
/* Overall Styling */
|
|
@@ -403,40 +405,6 @@ def create_ui():
|
|
| 403 |
|
| 404 |
return demo
|
| 405 |
|
| 406 |
-
# Main interface function
|
| 407 |
-
@spaces.GPU(duration=720)
|
| 408 |
-
def main_interface(user_prompt, image=None, audio=None, voice_only=False, websearch=False, document=None):
|
| 409 |
-
print("Starting main_interface function")
|
| 410 |
-
vqa_model.to(device='cuda', dtype=torch.bfloat16)
|
| 411 |
-
tts_model.to("cuda")
|
| 412 |
-
pipe.to("cuda")
|
| 413 |
-
|
| 414 |
-
print(f"user_prompt: {user_prompt}, image: {image}, audio: {audio}, voice_only: {voice_only}, websearch: {websearch}, document: {document}")
|
| 415 |
-
|
| 416 |
-
try:
|
| 417 |
-
response = handle_input(user_prompt, image=image, audio=audio, websearch=websearch, document=document)
|
| 418 |
-
print("handle_input function executed successfully")
|
| 419 |
-
except Exception as e:
|
| 420 |
-
print(f"Error in handle_input: {e}")
|
| 421 |
-
response = "Error occurred during processing."
|
| 422 |
-
|
| 423 |
-
if voice_only:
|
| 424 |
-
try:
|
| 425 |
-
transcription = client.audio.transcriptions.create(
|
| 426 |
-
file=("input.wav", open("input.wav", "rb").read()),
|
| 427 |
-
model="whisper-large-v3"
|
| 428 |
-
)
|
| 429 |
-
user_prompt = transcription.text
|
| 430 |
-
response = handle_input(user_prompt)
|
| 431 |
-
audio_output = play_voice_output(response)
|
| 432 |
-
print("play_voice_output function executed successfully")
|
| 433 |
-
return "Response generated.", audio_output
|
| 434 |
-
except Exception as e:
|
| 435 |
-
print(f"Error in play_voice_output: {e}")
|
| 436 |
-
return "Error occurred during voice output.", None
|
| 437 |
-
else:
|
| 438 |
-
return response, None
|
| 439 |
-
|
| 440 |
# Launch the UI
|
| 441 |
demo = create_ui()
|
| 442 |
demo.launch()
|
|
|
|
| 8 |
from diffusers import StableDiffusion3Pipeline
|
| 9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
| 10 |
import soundfile as sf
|
|
|
|
|
|
|
| 11 |
from langchain_groq import ChatGroq
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
from tavily import TavilyClient
|
|
|
|
|
|
|
|
|
|
| 14 |
from langchain.schema import AIMessage
|
| 15 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 16 |
from langchain_community.vectorstores import FAISS
|
| 17 |
from langchain_community.document_loaders import TextLoader
|
| 18 |
from langchain.text_splitter import CharacterTextSplitter
|
| 19 |
from langchain.chains import RetrievalQA
|
| 20 |
+
import json
|
| 21 |
|
| 22 |
# Initialize models and clients
|
| 23 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
|
|
|
| 48 |
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
|
| 49 |
return "output.wav"
|
| 50 |
|
| 51 |
+
# Function to classify user input using LLM
|
| 52 |
+
def classify_function(user_prompt):
|
| 53 |
+
prompt = f"""
|
| 54 |
+
You are a function classifier AI assistant. You are given a user input and you need to classify it into one of the following functions:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
+
- `image_generation`: If the user wants to generate an image.
|
| 57 |
+
- `image_description`: If the user wants to describe an image.
|
| 58 |
+
- `document_summarization`: If the user wants to summarize a document.
|
| 59 |
+
- `text_to_text`: If the user wants a text-based response.
|
| 60 |
+
|
| 61 |
+
Respond with a JSON object containing only the chosen function. For example:
|
| 62 |
+
|
| 63 |
+
```json
|
| 64 |
+
{{"function": "image_generation"}}
|
| 65 |
+
```
|
| 66 |
|
| 67 |
+
User input: {user_prompt}
|
| 68 |
+
"""
|
| 69 |
+
|
| 70 |
+
chat_completion = client.chat.completions.create(
|
| 71 |
+
messages=[
|
| 72 |
+
{
|
| 73 |
+
"role": "user",
|
| 74 |
+
"content": prompt,
|
| 75 |
+
}
|
| 76 |
+
],
|
| 77 |
+
model="llama3-8b-8192",
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
response = json.loads(chat_completion.choices[0].message.content)
|
| 82 |
+
function = response.get("function")
|
| 83 |
+
return function
|
| 84 |
+
except json.JSONDecodeError:
|
| 85 |
+
print(f"Error decoding JSON: {chat_completion.choices[0].message.content}")
|
| 86 |
+
return "text_to_text" # Default to text-to-text if JSON parsing fails
|
| 87 |
+
|
| 88 |
+
# Document Question Answering Tool
|
| 89 |
+
class DocumentQuestionAnswering:
|
| 90 |
def __init__(self, document):
|
|
|
|
| 91 |
self.document = document
|
| 92 |
self.qa_chain = self._setup_qa_chain()
|
| 93 |
|
|
|
|
| 107 |
)
|
| 108 |
return qa_chain
|
| 109 |
|
| 110 |
+
def run(self, query: str) -> str:
|
| 111 |
print("Executing DocumentQuestionAnswering tool")
|
| 112 |
response = self.qa_chain.run(query)
|
| 113 |
return str(response)
|
| 114 |
|
| 115 |
+
# Function to handle different input types and choose the right pipeline
|
|
|
|
| 116 |
def handle_input(user_prompt, image=None, audio=None, websearch=False, document=None):
|
| 117 |
print(f"Handling input: {user_prompt}")
|
| 118 |
|
| 119 |
# Initialize the LLM
|
| 120 |
llm = ChatGroq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
|
| 121 |
|
| 122 |
+
# Handle voice-only mode
|
| 123 |
+
if audio:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
print("Processing audio input")
|
| 125 |
transcription = client.audio.transcriptions.create(
|
| 126 |
file=(audio.name, audio.read()),
|
| 127 |
model="whisper-large-v3"
|
| 128 |
)
|
| 129 |
user_prompt = transcription.text
|
| 130 |
+
response = llm.call(query=user_prompt)
|
| 131 |
+
audio_output = play_voice_output(response)
|
| 132 |
+
return "Response generated.", audio_output
|
| 133 |
+
|
| 134 |
+
# Handle websearch mode
|
| 135 |
+
if websearch:
|
| 136 |
+
print("Executing Web Search")
|
| 137 |
+
answer = tavily_client.qna_search(query=user_prompt)
|
| 138 |
+
return answer, None
|
| 139 |
+
|
| 140 |
+
# Classify user input using LLM
|
| 141 |
+
function = classify_function(user_prompt)
|
| 142 |
+
|
| 143 |
+
# Handle different functions
|
| 144 |
+
if function == "image_generation":
|
| 145 |
+
print("Executing Image Generation")
|
| 146 |
+
image = pipe(
|
| 147 |
+
user_prompt,
|
| 148 |
+
negative_prompt="",
|
| 149 |
+
num_inference_steps=15,
|
| 150 |
+
guidance_scale=7.0,
|
| 151 |
+
).images[0]
|
| 152 |
+
image.save("output.jpg")
|
| 153 |
+
return "output.jpg", None
|
| 154 |
+
|
| 155 |
+
elif function == "image_description":
|
| 156 |
+
print("Executing Image Description")
|
| 157 |
+
if image:
|
| 158 |
+
image = Image.open(image).convert('RGB')
|
| 159 |
+
messages = [{"role": "user", "content": [image, user_prompt]}]
|
| 160 |
+
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
| 161 |
+
return response, None
|
| 162 |
else:
|
| 163 |
+
return "Please upload an image.", None
|
| 164 |
+
|
| 165 |
+
elif function == "document_summarization":
|
| 166 |
+
print("Executing Document Summarization")
|
| 167 |
+
if document:
|
| 168 |
+
document_qa = DocumentQuestionAnswering(document)
|
| 169 |
+
response = document_qa.run(user_prompt)
|
| 170 |
+
return response, None
|
| 171 |
+
else:
|
| 172 |
+
return "Please upload a document.", None
|
| 173 |
+
|
| 174 |
+
else: # function == "text_to_text"
|
| 175 |
+
print("Executing Text-to-Text")
|
| 176 |
response = llm.call(query=user_prompt)
|
| 177 |
+
return response, None
|
| 178 |
+
|
| 179 |
+
# Main interface function
|
| 180 |
+
@spaces.GPU(duration=720)
|
| 181 |
+
def main_interface(user_prompt, image=None, audio=None, voice_only=False, websearch=False, document=None):
|
| 182 |
+
print("Starting main_interface function")
|
| 183 |
+
vqa_model.to(device='cuda', dtype=torch.bfloat16)
|
| 184 |
+
tts_model.to("cuda")
|
| 185 |
+
pipe.to("cuda")
|
| 186 |
+
|
| 187 |
+
print(f"user_prompt: {user_prompt}, image: {image}, audio: {audio}, voice_only: {voice_only}, websearch: {websearch}, document: {document}")
|
| 188 |
+
|
| 189 |
+
try:
|
| 190 |
+
response = handle_input(user_prompt, image=image, audio=audio, websearch=websearch, document=document)
|
| 191 |
+
print("handle_input function executed successfully")
|
| 192 |
+
except Exception as e:
|
| 193 |
+
print(f"Error in handle_input: {e}")
|
| 194 |
+
response = "Error occurred during processing."
|
| 195 |
|
| 196 |
return response
|
| 197 |
|
|
|
|
| 198 |
def create_ui():
|
| 199 |
with gr.Blocks(css="""
|
| 200 |
/* Overall Styling */
|
|
|
|
| 405 |
|
| 406 |
return demo
|
| 407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 408 |
# Launch the UI
|
| 409 |
demo = create_ui()
|
| 410 |
demo.launch()
|