Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,9 @@ import re
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import gradio as gr
|
6 |
import os
|
7 |
-
READ_HF=os.environ["read_hf"]
|
8 |
from unsloth import FastLanguageModel
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
14 |
|
15 |
### Instruction:
|
@@ -64,37 +61,47 @@ You are an AI assistant tasked with managing inventory based on user instruction
|
|
64 |
- Pay close attention to the case and spelling of function names and parameters.
|
65 |
|
66 |
Category List : ["Dairy & Eggs", "Beverages & Snacks", "Cleaning & Hygiene", "Grains & Staples", "Personal Care", "Other"]
|
67 |
-
|
68 |
'''
|
69 |
|
70 |
-
|
71 |
@spaces.GPU()
|
72 |
def chunk_it(inventory_list, user_input_text):
|
|
|
73 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
)
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
], return_tensors="pt").to("cuda")
|
89 |
-
|
90 |
-
# Generation with a longer max_length and better sampling
|
91 |
-
outputs = model.generate(**inputs, max_new_tokens=216, use_cache=True)
|
92 |
|
93 |
reply = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
|
|
|
|
|
94 |
# pattern = r"### Response:\n(.*?)<\|end_of_text\|>"
|
95 |
-
#
|
96 |
-
# match = re.search(pattern, reply[0], re.DOTALL) # re.DOTALL allows '.' to match newlines
|
97 |
# reply = match.group(1).strip()
|
|
|
|
|
98 |
return reply
|
99 |
|
100 |
# Interface for inputs
|
@@ -108,4 +115,6 @@ iface = gr.Interface(
|
|
108 |
title="Testing",
|
109 |
)
|
110 |
|
|
|
111 |
iface.launch(inline=False)
|
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import gradio as gr
|
6 |
import os
|
7 |
+
READ_HF = os.environ["read_hf"]
|
8 |
from unsloth import FastLanguageModel
|
9 |
|
|
|
|
|
|
|
10 |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
11 |
|
12 |
### Instruction:
|
|
|
61 |
- Pay close attention to the case and spelling of function names and parameters.
|
62 |
|
63 |
Category List : ["Dairy & Eggs", "Beverages & Snacks", "Cleaning & Hygiene", "Grains & Staples", "Personal Care", "Other"]
|
|
|
64 |
'''
|
65 |
|
|
|
66 |
@spaces.GPU()
|
67 |
def chunk_it(inventory_list, user_input_text):
|
68 |
+
print("Loading model and tokenizer...")
|
69 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
70 |
+
model_name = "VanguardAI/CoT_multi_llama_LoRA_4bit",
|
71 |
+
max_seq_length = 2048,
|
72 |
+
dtype = torch.bfloat16,
|
73 |
+
load_in_4bit = True,
|
74 |
+
token = READ_HF
|
75 |
+
)
|
76 |
+
print("Model and tokenizer loaded.")
|
77 |
+
|
78 |
+
print("Enabling native 2x faster inference...")
|
79 |
+
FastLanguageModel.for_inference(model)
|
80 |
+
print("Inference enabled.")
|
81 |
+
|
82 |
+
formatted_prompt = alpaca_prompt.format(
|
83 |
+
string + inventory_list, # instruction
|
84 |
+
user_input_text, # input
|
85 |
+
"", # output - leave this blank for generation!
|
86 |
)
|
87 |
+
print("Formatted prompt: ", formatted_prompt)
|
88 |
+
|
89 |
+
inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
|
90 |
+
print("Tokenized inputs: ", inputs)
|
91 |
+
|
92 |
+
print("Generating output...")
|
93 |
+
outputs = model.generate(**inputs, max_new_tokens=216, use_cache=True)
|
94 |
+
print("Output generated.")
|
|
|
|
|
|
|
|
|
95 |
|
96 |
reply = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
97 |
+
print("Decoded output: ", reply)
|
98 |
+
|
99 |
+
# Uncomment the following lines if further processing of the reply is needed
|
100 |
# pattern = r"### Response:\n(.*?)<\|end_of_text\|>"
|
101 |
+
# match = re.search(pattern, reply[0], re.DOTALL)
|
|
|
102 |
# reply = match.group(1).strip()
|
103 |
+
|
104 |
+
print("Final reply: ", reply)
|
105 |
return reply
|
106 |
|
107 |
# Interface for inputs
|
|
|
115 |
title="Testing",
|
116 |
)
|
117 |
|
118 |
+
print("Launching Gradio interface...")
|
119 |
iface.launch(inline=False)
|
120 |
+
print("Gradio interface launched.")
|