Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import numpy as np
|
|
5 |
from groq import Groq
|
6 |
import spaces
|
7 |
from transformers import AutoModel, AutoTokenizer
|
8 |
-
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
10 |
import soundfile as sf
|
11 |
from llama_index.core.agent import ReActAgent
|
@@ -16,12 +15,12 @@ from tavily import TavilyClient
|
|
16 |
import requests
|
17 |
from huggingface_hub import hf_hub_download
|
18 |
from safetensors.torch import load_file
|
|
|
19 |
|
20 |
# Initialize models and clients
|
21 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
22 |
client = Groq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
|
23 |
|
24 |
-
|
25 |
vqa_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True,
|
26 |
device_map="auto", torch_dtype=torch.bfloat16)
|
27 |
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True)
|
@@ -29,15 +28,9 @@ tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_co
|
|
29 |
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1")
|
30 |
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")
|
31 |
|
32 |
-
# Image
|
33 |
-
|
34 |
-
|
35 |
-
ckpt = "sdxl_lightning_4step_unet.safetensors"
|
36 |
-
|
37 |
-
unet = UNet2DConditionModel.from_config(base, subfolder="unet")
|
38 |
-
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
|
39 |
-
image_pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16")
|
40 |
-
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")
|
41 |
|
42 |
# Tavily Client for web search
|
43 |
tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API"))
|
@@ -79,7 +72,12 @@ def web_search(query):
|
|
79 |
|
80 |
# Image Generation Tool
|
81 |
def image_generation(query):
|
82 |
-
image =
|
|
|
|
|
|
|
|
|
|
|
83 |
image.save("output.jpg")
|
84 |
return "output.jpg"
|
85 |
|
@@ -97,7 +95,7 @@ def handle_input(user_prompt, image=None, audio=None, websearch=False):
|
|
97 |
user_prompt = transcription.text
|
98 |
|
99 |
tools = [
|
100 |
-
FunctionTool.from_defaults(fn=numpy_code_calculator, name="Numpy
|
101 |
FunctionTool.from_defaults(fn=image_generation, name="Image"),
|
102 |
]
|
103 |
|
@@ -166,8 +164,7 @@ def main_interface(user_prompt, image=None, audio=None, voice_only=False, websea
|
|
166 |
print("Starting main_interface function")
|
167 |
vqa_model.to(device='cuda', dtype=torch.bfloat16)
|
168 |
tts_model.to("cuda")
|
169 |
-
|
170 |
-
image_pipe.to("cuda")
|
171 |
|
172 |
print(f"user_prompt: {user_prompt}, image: {image}, audio: {audio}, voice_only: {voice_only}, websearch: {websearch}")
|
173 |
|
@@ -192,4 +189,4 @@ def main_interface(user_prompt, image=None, audio=None, voice_only=False, websea
|
|
192 |
|
193 |
# Launch the UI
|
194 |
demo = create_ui()
|
195 |
-
demo.launch()
|
|
|
5 |
from groq import Groq
|
6 |
import spaces
|
7 |
from transformers import AutoModel, AutoTokenizer
|
|
|
8 |
from parler_tts import ParlerTTSForConditionalGeneration
|
9 |
import soundfile as sf
|
10 |
from llama_index.core.agent import ReActAgent
|
|
|
15 |
import requests
|
16 |
from huggingface_hub import hf_hub_download
|
17 |
from safetensors.torch import load_file
|
18 |
+
from diffusers import StableDiffusion3Pipeline
|
19 |
|
20 |
# Initialize models and clients
|
21 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
22 |
client = Groq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
|
23 |
|
|
|
24 |
vqa_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True,
|
25 |
device_map="auto", torch_dtype=torch.bfloat16)
|
26 |
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True)
|
|
|
28 |
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1")
|
29 |
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")
|
30 |
|
31 |
+
# Updated Image Generation Model
|
32 |
+
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
|
33 |
+
pipe = pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Tavily Client for web search
|
36 |
tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API"))
|
|
|
72 |
|
73 |
# Image Generation Tool
|
74 |
def image_generation(query):
|
75 |
+
image = pipe(
|
76 |
+
query,
|
77 |
+
negative_prompt="",
|
78 |
+
num_inference_steps=28,
|
79 |
+
guidance_scale=7.0,
|
80 |
+
).images[0]
|
81 |
image.save("output.jpg")
|
82 |
return "output.jpg"
|
83 |
|
|
|
95 |
user_prompt = transcription.text
|
96 |
|
97 |
tools = [
|
98 |
+
FunctionTool.from_defaults(fn=numpy_code_calculator, name="Numpy"),
|
99 |
FunctionTool.from_defaults(fn=image_generation, name="Image"),
|
100 |
]
|
101 |
|
|
|
164 |
print("Starting main_interface function")
|
165 |
vqa_model.to(device='cuda', dtype=torch.bfloat16)
|
166 |
tts_model.to("cuda")
|
167 |
+
pipe.to("cuda")
|
|
|
168 |
|
169 |
print(f"user_prompt: {user_prompt}, image: {image}, audio: {audio}, voice_only: {voice_only}, websearch: {websearch}")
|
170 |
|
|
|
189 |
|
190 |
# Launch the UI
|
191 |
demo = create_ui()
|
192 |
+
demo.launch()
|