Spaces:
Sleeping
Sleeping
File size: 8,432 Bytes
5f52293 ed2f5ce 69f2e98 ed2f5ce 12fad92 ed2f5ce c8af3a0 72a27e8 c8af3a0 ed2f5ce b1f3cf3 c8af3a0 12fad92 c8af3a0 ed2f5ce c8af3a0 ed2f5ce d5685b0 ed2f5ce d5685b0 ed2f5ce d5685b0 ed2f5ce d5685b0 ed2f5ce d5685b0 ed2f5ce 72a27e8 ed2f5ce 72a27e8 ed2f5ce 72a27e8 ed2f5ce 72a27e8 ed2f5ce 72a27e8 ed2f5ce d5685b0 72a27e8 d5685b0 ed2f5ce d5685b0 ed2f5ce d5685b0 ed2f5ce d5685b0 ed2f5ce d5685b0 ed2f5ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import torch
import os
import numpy as np
from groq import Groq
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from parler_tts import ParlerTTSForConditionalGeneration
import soundfile as sf
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain_community.llms import OpenAI
from PIL import Image
from decord import VideoReader, cpu
import requests
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
# Configure BitsAndBytes for 4-bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load MiniCPM-V-2_6 with 4-bit quantization
text_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True,
quantization_config=bnb_config, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True)
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1").to('cuda')
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")
image_model = UNet2DConditionModel.from_config("stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet").to("cuda", torch.float16)
image_pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", unet=image_model, torch_dtype=torch.float16, variant="fp16").to("cuda")
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")
# Initialize voice-only mode
def play_voice_output(response):
description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda')
prompt_input_ids = tts_tokenizer(response, return_tensors="pt").input_ids.to('cuda')
generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
return "output.wav"
# Web search function
def web_search(query):
api_key = os.environ.get("BING_API_KEY")
search_url = "https://api.bing.microsoft.com/v7.0/search"
headers = {"Ocp-Apim-Subscription-Key": api_key}
params = {"q": query, "textDecorations": True, "textFormat": "HTML"}
response = requests.get(search_url, headers=headers, params=params)
response.raise_for_status()
search_results = response.json()
snippets = [result['snippet'] for result in search_results.get('webPages', {}).get('value', [])]
return "\n".join(snippets)
# NumPy Calculation function
def numpy_calculate(code: str) -> str:
try:
local_dict = {}
exec(code, {"np": np}, local_dict)
result = local_dict.get("result", "No result found")
return str(result)
except Exception as e:
return f"An error occurred: {str(e)}"
# Function to handle different input types
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None):
messages = [{"role": "user", "content": user_prompt}]
if audio:
transcription = client.audio.transcriptions.create(
file=(audio.name, audio.read()),
model="whisper-large-v3"
)
user_prompt = transcription.text
if doc:
# RAG with Langchain
response = use_langchain_rag(doc.name, doc.read(), user_prompt)
elif image and not video:
image = Image.open(image).convert('RGB')
messages[0]['content'] = [image, user_prompt]
response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
elif video:
frames = encode_video(video.name)
messages[0]['content'] = frames + [user_prompt]
response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
else:
response = client.chat.completions.create(
model=MODEL,
messages=messages,
tools=initialize_tools()
).choices[0].message.content
return response
# Function to use Langchain for RAG
def use_langchain_rag(file_name, file_content, query):
# Split the document into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.create_documents([file_content])
# Create embeddings and store in the vector database
embeddings = OpenAIEmbeddings()
db = Chroma.from_documents(docs, embeddings, persist_directory=".chroma_db") # Use a persistent directory
# Create a question-answering chain
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=db.as_retriever())
# Get the answer
return qa.run(query)
# Function to encode video
def encode_video(video_path):
MAX_NUM_FRAMES = 64
vr = VideoReader(video_path, ctx=cpu(0))
sample_fps = round(vr.get_avg_fps() / 1)
frame_idx = [i for i in range(0, len(vr), sample_fps)]
if len(frame_idx) > MAX_NUM_FRAMES:
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
frames = vr.get_batch(frame_idx).asnumpy()
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
return frames
# Initialize tools with web search and NumPy calculation
def initialize_tools():
tools = [
{
"type": "function",
"function": {
"name": "calculate",
"description": "Evaluate a mathematical expression",
"parameters": {
"type": "object",
"properties": {
"expression": {"type": "string", "description": "The mathematical expression to evaluate"}
},
"required": ["expression"]
},
}
},
{
"type": "function",
"function": {
"name": "web_search",
"description": "Perform a web search",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "The search query"}
},
"required": ["query"]
},
"implementation": web_search
}
},
{
"type": "function",
"function": {
"name": "numpy_calculate",
"description": "Execute NumPy-based Python code for calculations",
"parameters": {
"type": "object",
"properties": {
"code": {"type": "string", "description": "The Python code with NumPy operations"}
},
"required": ["code"]
},
"implementation": numpy_calculate
}
}
]
return tools
@spaces.GPU()
# Gradio Interface
def main_interface(user_prompt, image=None, video=None, audio=None, doc=None, voice_only=False):
response = handle_input(user_prompt, image=image, video=video, audio=audio, doc=doc)
if voice_only:
audio_file = play_voice_output(response)
return gr.Audio.update(value=audio_file, visible=True)
else:
return response
# Gradio App Setup
with gr.Blocks() as demo:
user_prompt = gr.Textbox(placeholder="Type your message here...", lines=1)
image_input = gr.Image(type="file", label="Upload an image")
video_input = gr.Video(type="file", label="Upload a video")
audio_input = gr.Audio(type="file", label="Upload audio")
doc_input = gr.File(type="file", label="Upload a document")
voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode")
output = gr.Output()
submit = gr.Button("Submit")
submit.click(
fn=main_interface,
inputs=[user_prompt, image_input, video_input, audio_input, doc_input, voice_only_mode],
outputs=output
)
demo.launch(inline=False) |