File size: 8,515 Bytes
5f52293
ed2f5ce
69f2e98
ed2f5ce
 
97cd026
82043d5
ed2f5ce
 
 
c8af3a0
 
72a27e8
 
c8af3a0
ed2f5ce
 
 
2e5cfb3
 
ed2f5ce
 
 
b1f3cf3
2e5a20c
5f53de2
2e5a20c
d5685b0
7f9822a
ed2f5ce
d5685b0
2e5cfb3
 
 
 
 
 
 
 
 
d5685b0
ed2f5ce
 
 
 
 
 
 
 
 
d5685b0
ed2f5ce
 
 
 
 
 
 
 
 
 
 
d5685b0
ed2f5ce
 
 
 
 
 
 
 
 
72a27e8
ed2f5ce
 
 
72a27e8
ed2f5ce
 
 
 
 
 
72a27e8
ed2f5ce
72a27e8
 
ed2f5ce
 
 
 
 
 
 
 
 
 
 
 
 
 
72a27e8
ed2f5ce
d5685b0
72a27e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5685b0
ed2f5ce
 
 
 
 
 
 
 
 
 
 
d5685b0
ed2f5ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82043d5
ed2f5ce
 
82043d5
7f9822a
2e5cfb3
82043d5
ed2f5ce
 
 
 
d5685b0
ed2f5ce
d5685b0
ed2f5ce
 
 
b656402
cc79e1c
b656402
 
ed2f5ce
 
 
 
 
 
 
 
 
d5685b0
82043d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import gradio as gr
import torch
import os
import numpy as np
from groq import Groq
import spaces
from transformers import AutoModel, AutoTokenizer
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from parler_tts import ParlerTTSForConditionalGeneration
import soundfile as sf
from langchain_community.embeddings import OpenAIEmbeddings  
from langchain_community.vectorstores import Chroma 
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain_community.llms import OpenAI 
from PIL import Image
from decord import VideoReader, cpu
import requests
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
MODEL = 'llama3-groq-70b-8192-tool-use-preview'

text_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True,
                                       device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True)

tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1")
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")

# Corrected image model and pipeline setup
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors"

unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
image_pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")

# Initialize voice-only mode
def play_voice_output(response):
    description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
    input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda')
    prompt_input_ids = tts_tokenizer(response, return_tensors="pt").input_ids.to('cuda')
    generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
    audio_arr = generation.cpu().numpy().squeeze()
    sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
    return "output.wav"

# Web search function
def web_search(query):
    api_key = os.environ.get("BING_API_KEY")
    search_url = "https://api.bing.microsoft.com/v7.0/search"
    headers = {"Ocp-Apim-Subscription-Key": api_key}
    params = {"q": query, "textDecorations": True, "textFormat": "HTML"}
    response = requests.get(search_url, headers=headers, params=params)
    response.raise_for_status()
    search_results = response.json()
    snippets = [result['snippet'] for result in search_results.get('webPages', {}).get('value', [])]
    return "\n".join(snippets)

# NumPy Calculation function
def numpy_calculate(code: str) -> str:
    try:
        local_dict = {}
        exec(code, {"np": np}, local_dict)
        result = local_dict.get("result", "No result found")
        return str(result)
    except Exception as e:
        return f"An error occurred: {str(e)}"

# Function to handle different input types
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None):
    messages = [{"role": "user", "content": user_prompt}]

    if audio:
        transcription = client.audio.transcriptions.create(
            file=(audio.name, audio.read()),
            model="whisper-large-v3"
        )
        user_prompt = transcription.text

    if doc:
        # RAG with Langchain
        response = use_langchain_rag(doc.name, doc.read(), user_prompt)
    elif image and not video:
        image = Image.open(image).convert('RGB')
        messages[0]['content'] = [image, user_prompt]
        response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
    elif video:
        frames = encode_video(video.name)
        messages[0]['content'] = frames + [user_prompt]
        response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
    else:
        response = client.chat.completions.create(
            model=MODEL,
            messages=messages,
            tools=initialize_tools()
        ).choices[0].message.content

    return response

# Function to use Langchain for RAG
def use_langchain_rag(file_name, file_content, query):
    # Split the document into chunks
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
    docs = text_splitter.create_documents([file_content])

    # Create embeddings and store in the vector database
    embeddings = OpenAIEmbeddings()
    db = Chroma.from_documents(docs, embeddings, persist_directory=".chroma_db")  # Use a persistent directory

    # Create a question-answering chain
    qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=db.as_retriever())

    # Get the answer
    return qa.run(query)

# Function to encode video
def encode_video(video_path):
    MAX_NUM_FRAMES = 64
    vr = VideoReader(video_path, ctx=cpu(0))
    sample_fps = round(vr.get_avg_fps() / 1)
    frame_idx = [i for i in range(0, len(vr), sample_fps)]
    if len(frame_idx) > MAX_NUM_FRAMES:
        frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
    frames = vr.get_batch(frame_idx).asnumpy()
    frames = [Image.fromarray(v.astype('uint8')) for v in frames]
    return frames

# Initialize tools with web search and NumPy calculation
def initialize_tools():
    tools = [
        {
            "type": "function",
            "function": {
                "name": "calculate",
                "description": "Evaluate a mathematical expression",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "expression": {"type": "string", "description": "The mathematical expression to evaluate"}
                    },
                    "required": ["expression"]
                },
            }
        },
        {
            "type": "function",
            "function": {
                "name": "web_search",
                "description": "Perform a web search",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "query": {"type": "string", "description": "The search query"}
                    },
                    "required": ["query"]
                },
                "implementation": web_search 
            }
        },
        {
            "type": "function",
            "function": {
                "name": "numpy_calculate",
                "description": "Execute NumPy-based Python code for calculations",
                "parameters": {
                    "type": "object",
                    "properties": {
                        "code": {"type": "string", "description": "The Python code with NumPy operations"}
                    },
                    "required": ["code"]
                },
                "implementation": numpy_calculate
            }
        }
    ]
    return tools

@spaces.GPU()
def main_interface(user_prompt, image=None, video=None, audio=None, doc=None, voice_only=False):
    text_model.to(device='cuda', dtype=torch.bfloat16)
    tts_model.to("cuda")
    unet.to("cuda", torch.float16)
    image_pipe.to("cuda")
    response = handle_input(user_prompt, image=image, video=video, audio=audio, doc=doc)
    if voice_only:
        audio_file = play_voice_output(response)
        return gr.Audio.update(value=audio_file, visible=True)
    else:
        return response

# Gradio App Setup
with gr.Blocks() as demo:
    user_prompt = gr.Textbox(placeholder="Type your message here...", lines=1)
    image_input = gr.Image(type="filepath", label="Upload an image")
    video_input = gr.Video(label="Upload a video")
    audio_input = gr.Audio(type="filepath", label="Upload audio")
    doc_input = gr.File(type="filepath", label="Upload a document")
    voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode")
    output = gr.Output()
    
    submit = gr.Button("Submit")
    submit.click(
        fn=main_interface,
        inputs=[user_prompt, image_input, video_input, audio_input, doc_input, voice_only_mode],
        outputs=output
    )

demo.launch(inline=False)