ValentinConstantin commited on
Commit
af4088d
·
verified ·
1 Parent(s): 3ed00fd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -56
app.py CHANGED
@@ -1,64 +1,22 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("gaussalgo/T5-LM-Large-text2sql-spider")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
 
2
 
3
+ model_path = 'gaussalgo/T5-LM-Large-text2sql-spider'
4
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
5
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
+ question = "What is the average, minimum, and maximum age for all French musicians?"
8
+ schema = """
9
+ "stadium" "Stadium_ID" int , "Location" text , "Name" text , "Capacity" int , "Highest" int , "Lowest" int , "Average" int , foreign_key: primary key: "Stadium_ID" [SEP] "singer" "Singer_ID" int , "Name" text , "Country" text , "Song_Name" text , "Song_release_year" text , "Age" int , "Is_male" bool , foreign_key: primary key: "Singer_ID" [SEP] "concert" "concert_ID" int , "concert_Name" text , "Theme" text , "Year" text , foreign_key: "Stadium_ID" text from "stadium" "Stadium_ID" , primary key: "concert_ID" [SEP] "singer_in_concert" foreign_key: "concert_ID" int from "concert" "concert_ID" , "Singer_ID" text from "singer" "Singer_ID" , primary key: "concert_ID" "Singer_ID"
10
+ """
11
 
12
+ input_text = " ".join(["Question: ",question, "Schema:", schema])
 
 
 
 
 
 
 
13
 
14
+ model_inputs = tokenizer(input_text, return_tensors="pt")
15
+ outputs = model.generate(**model_inputs, max_length=512)
16
 
17
+ output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
18
 
19
+ print("SQL Query:")
20
+ print(output_text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22