File size: 12,498 Bytes
dddb9f9
 
 
d967830
dddb9f9
 
8c4ff63
dddb9f9
8c4ff63
 
 
dddb9f9
 
 
d967830
 
dddb9f9
 
 
 
d967830
dddb9f9
d967830
dddb9f9
 
 
 
 
 
d967830
dddb9f9
faad4ba
dddb9f9
 
d967830
 
dddb9f9
 
 
 
 
 
 
 
 
 
d967830
dddb9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d967830
6ded705
dddb9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
faad4ba
dddb9f9
 
 
 
 
 
 
 
 
faad4ba
dddb9f9
 
 
 
 
 
 
 
 
6ded705
dddb9f9
faad4ba
 
dddb9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d967830
dddb9f9
 
 
 
 
 
 
 
 
 
 
 
 
faad4ba
d967830
 
8c4ff63
 
36dbf7a
8c4ff63
36dbf7a
 
 
 
 
 
d967830
 
 
 
36dbf7a
 
 
 
 
 
 
 
 
 
 
 
 
d967830
 
 
 
 
 
 
 
8c4ff63
 
d967830
8c4ff63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36dbf7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dddb9f9
 
35379ab
dddb9f9
 
 
 
 
 
 
35379ab
 
dddb9f9
 
 
35379ab
dddb9f9
 
 
 
 
 
 
35379ab
dddb9f9
35379ab
dddb9f9
 
35379ab
 
 
dddb9f9
 
36dbf7a
8c4ff63
36dbf7a
 
d967830
dddb9f9
 
 
 
35379ab
 
 
 
dddb9f9
d967830
 
 
abede12
d967830
 
 
 
8c4ff63
 
d967830
 
 
 
 
dddb9f9
 
 
 
 
 
d967830
dddb9f9
d967830
36dbf7a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import warnings
warnings.filterwarnings("ignore")

import os
import numpy as np
import pandas as pd
from typing import Iterable

import gradio as gr
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes

import torch
import librosa
import torch.nn.functional as F

# Import the necessary functions from the voj package
from audio_class_predictor import predict_class
from bird_ast_model import birdast_preprocess, birdast_inference
from bird_ast_seq_model import birdast_seq_preprocess, birdast_seq_inference

from utils import plot_wave, plot_mel, download_model, bandpass_filter

# Define the default parameters
ASSET_DIR = "./assets"
DEFUALT_SR = 16_000
DEFUALT_HIGH_CUT = 8_000
DEFUALT_LOW_CUT = 1_000
DEVICE = "cpu" #"cuda" if torch.cuda.is_available() else "cpu"

print(f"Device: {DEVICE}")

if not os.path.exists(ASSET_DIR):
    os.makedirs(ASSET_DIR)


# define the assets for the models
birdast_assets = {
    "model_weights": [
        f"https://huggingface.co/shiyi-li/BirdAST/resolve/main/BirdAST_Baseline_GroupKFold_fold_{i}.pth"
        for i in range(5)
    ],
    "label_mapping": "https://huggingface.co/shiyi-li/BirdAST/resolve/main/BirdAST_Baseline_GroupKFold_label_map.csv",
    "preprocess_fn": birdast_preprocess,
    "inference_fn": birdast_inference,
}

birdast_seq_assets = {
    "model_weights": [
        f"https://huggingface.co/shiyi-li/BirdAST_Seq/resolve/main/BirdAST_SeqPool_GroupKFold_fold_{i}.pth"
        for i in range(5)
    ],
    "label_mapping": "https://huggingface.co/shiyi-li/BirdAST_Seq/resolve/main/BirdAST_SeqPool_GroupKFold_label_map.csv",
    "preprocess_fn": birdast_seq_preprocess,
    "inference_fn": birdast_seq_inference,
}

# maintain a dictionary of assets
ASSET_DICT = {
    "BirdAST": birdast_assets,
    "BirdAST_Seq": birdast_seq_assets,
}


def run_inference_with_model(audio_clip, sr, model_name):
    
    # download the model assets
    assets = ASSET_DICT[model_name]
    model_weights_url = assets["model_weights"]
    label_map_url = assets["label_mapping"]
    preprocess_fn = assets["preprocess_fn"]
    inference_fn = assets["inference_fn"]
    
    # download the model weights
    model_weights = []
    for model_weight in model_weights_url:
        weight_file = os.path.join(ASSET_DIR, model_weight.split("/")[-1])
        if not os.path.exists(weight_file):
            download_model(model_weight, weight_file)
        model_weights.append(weight_file)
    
    # download the label mapping
    label_map_csv = os.path.join(ASSET_DIR, label_map_url.split("/")[-1])
    if not os.path.exists(label_map_csv):
        download_model(label_map_url, label_map_csv)
    
    # load the label mapping
    label_mapping = pd.read_csv(label_map_csv)
    species_id_to_name = {row["species_id"]: row["scientific_name"] for _, row in label_mapping.iterrows()}
    
    # preprocess the audio clip
    spectrogram = preprocess_fn(audio_clip, sr=sr)
    
    # run inference
    predictions = inference_fn(model_weights, spectrogram, device=DEVICE)

    # aggregate the results
    final_predicts = predictions.mean(axis=0)
    topk_values, topk_indices = torch.topk(torch.from_numpy(final_predicts), 10)
    
    results = []
    for idx, scores in zip(topk_indices, topk_values):
        species_name = species_id_to_name[idx.item()]
        probability = scores.item() * 100
        results.append([species_name, probability])

    return results


def predict(audio, start, end, model_name="BirdAST_Seq"):
    
    raw_sr, audio_array = audio
    
    if audio_array.ndim > 1:
        audio_array = audio_array.mean(axis=1) # convert to mono
    
    print(f"Audio shape raw: {audio_array.shape}, sr: {raw_sr}")
    
    # sainty checks
    len_audio = audio_array.shape[0] / raw_sr
    if start >= end:
        raise gr.Error(f"`start` ({start}) must be smaller than end ({end}s)")
    
    if audio_array.shape[0] < start * raw_sr:
        raise gr.Error(f"`start` ({start}) must be smaller than audio duration ({len_audio:.0f}s)")
    
    if audio_array.shape[0] > end * raw_sr:
        end = audio_array.shape[0] / (1.0*raw_sr)
    
    audio_array = np.array(audio_array, dtype=np.float32) / 32768.0
    audio_array = audio_array[int(start*raw_sr) : int(end*raw_sr)]
    
    if raw_sr != DEFUALT_SR:
        # run bandpass filter & resample
        audio_array = bandpass_filter(audio_array, DEFUALT_LOW_CUT, DEFUALT_HIGH_CUT, raw_sr)
        audio_array = librosa.resample(audio_array, orig_sr=raw_sr, target_sr=DEFUALT_SR)
        print(f"Resampled Audio shape: {audio_array.shape}")
        
        audio_array = audio_array.astype(np.float32)

    # predict audio class 
    audio_class = predict_class(audio_array)
    
    fig_spectrogram = plot_mel(DEFUALT_SR, audio_array)
    fig_waveform = plot_wave(DEFUALT_SR, audio_array)
    
    # run inference with model
    print(f"Running inference with model: {model_name}")
    species_class = run_inference_with_model(audio_array, DEFUALT_SR, model_name)

    return audio_class, species_class, fig_waveform, fig_spectrogram


DESCRIPTION = """
# Introduction 

It is esimated that 50% of the global economy is threatened by biodiversity loss [2]. As such, intensive efforts have been concerted into estimating bird biodiversity, as birds are a top indicator of biodiversity in the region. One of these efforts is 
finding the bird species in a region using bird species audio classification. 

# Solution

To tackle this problem, we propose VOJ. It first preprocesses an audio signal using a bandpass filter (1K - 8K) and then applies downsampling to 16K Hz. Afterwards, we input the signal into AudioMAE (Audio Masked AutoEncoder by Meta [1]) which extracts relevant features even in the presence of corruptions to the signal spectrogram. 
The AudioMAE is also trained on 527 types of audio that comprise bird, silence, environmental noise, and other types. The purpose of this initial inference stage is to provide an initial sense of the audio. If the AudioMAE outputs silence, we can expect low species prediction confidence, or if the output is insect, it may not be worth labelling. 
Next, we train BirdAST, which has Audio Spectrogram Transformer (AST) as backbone, followed by an attention pooling and dense layer. We also train EfficientB0 on the melspectrogram, and finally, we train a model using Wav2Vec pretrained on 50 bird species [3].   
"""


css = """
#gradio-animation {
    font-size: 2em;
    font-weight: bold;
    text-align: center;
    margin-bottom: 20px;
}

.logo-container img {
    width: 14%;  /* Adjust width as necessary */
    display: block;
    margin: auto;
}

.number-input {
    height: 100%;
    padding-bottom: 60px; /* Adust the value as needed for more or less space */
}
.full-height {
    height: 100%;
}
.column-container {
    height: 100%; 
} 
"""



class Seafoam(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.emerald,
        secondary_hue: colors.Color | str = colors.blue,
        neutral_hue: colors.Color | str = colors.gray,
        spacing_size: sizes.Size | str = sizes.spacing_md,
        radius_size: sizes.Size | str = sizes.radius_md,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Quicksand"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )


seafoam = Seafoam()


js = """
function createGradioAnimation() {
    var container = document.getElementById('gradio-animation');
    var text = 'Voice of Jungle';
    for (var i = 0; i < text.length; i++) {
        (function(i){
            setTimeout(function(){
                var letter = document.createElement('span');
                letter.style.opacity = '0';
                letter.style.transition = 'opacity 0.5s';
                letter.innerText = text[i];
                container.appendChild(letter);
                setTimeout(function() {
                    letter.style.opacity = '1';
                }, 50);
            }, i * 250);
        })(i);
    }
}
"""

REFERENCES = """
References

[1] Huang, P.-Y., Xu, H., Li, J., Baevski, A., Auli, M., Galuba, W., Metze, F., & Feichtenhofer, C. (2022). Masked Autoencoders that Listen. In NeurIPS.

[2] Torkington, S. (2023, February 7). 50% of the global economy is under threat from biodiversity loss. World Economic Forum. Retrieved from https://www.weforum.org/agenda/2023/02/biodiversity-nature-loss-cop15/. 

[3] https://www.kaggle.com/code/dima806/bird-species-by-sound-detection
"""

# Function to handle model selection
def handle_model_selection(model_name, download_status):
    # Inform user that download is starting
    # gr.Info(f"Downloading model weights for {model_name}...")
    print(f"Downloading model weights for {model_name}...")
    assets = ASSET_DICT[model_name]
    model_weights_url = assets["model_weights"]
    download_flag = True
    try:
        total_files = len(model_weights_url)
        for idx, model_weight in enumerate(model_weights_url):
            weight_file = os.path.join(ASSET_DIR, model_weight.split("/")[-1])
            print(weight_file)
            if not os.path.exists(weight_file):
                download_status = f"Downloading {idx + 1} of {total_files}"
                download_model(model_weight, weight_file)
            
            if not os.path.exists(weight_file):
                download_flag = False
                break
            
        if download_flag:
            download_status =  f"Model {model_name} is ready for prediction!"
        else:
            download_status = f"An error occurred while downloading model weights."
            
    except Exception as e:
        download_status = f"An error occurred while downloading model weights."
        
    return download_status


with gr.Blocks(theme = seafoam, css = css, js = js) as demo:
    
    gr.Markdown('<div class="logo-container"><img src="https://i.ibb.co/vcG9kr0/vojlogo.jpg" width="50px" alt="vojlogo"></div>')
    gr.Markdown('<div id="gradio-animation"></div>')
    gr.Markdown(DESCRIPTION)
    
    # add dropdown for model selection
    model_names = ['BirdAST', 'BirdAST_Seq', 'EfficientNet']
    model_dropdown = gr.Dropdown(label="Choose a model", choices=model_names)
    download_status = gr.Textbox(label="Model Status", lines=3, value='', interactive=False) # Non-interactive textbox for status

    model_dropdown.change(handle_model_selection, inputs=[model_dropdown, download_status], outputs=download_status)

    
    with gr.Row():
        with gr.Column(elem_classes="column-container"):
            start_time_input = gr.Number(label="Start Time", value=0, elem_classes="number-input full-height")
            end_time_input = gr.Number(label="End Time", value=10, elem_classes="number-input full-height")
        with gr.Column():
            audio_input = gr.Audio(label="Input Audio", elem_classes="full-height")
  
    with gr.Row():
        raw_class_output = gr.Dataframe(headers=["Class", "Score [%]"], row_count=10, label="Class Prediction")
        species_output = gr.Dataframe(headers=["Class", "Score [%]"], row_count=10, label="Species Prediction")
        
    with gr.Row():
        waveform_output = gr.Plot(label="Waveform")
        spectrogram_output = gr.Plot(label="Spectrogram")
    
    # gr.Examples(
    #     examples=[
    #         ["1094_Pionus_fuscus_2.wav", 0, 10],
    #     ],
    #     inputs=[audio_input, start_time_input, end_time_input]
    # )
    
    gr.Button("Predict").click(predict, [audio_input, start_time_input, end_time_input, model_dropdown], [raw_class_output, species_output, waveform_output, spectrogram_output])

    gr.Markdown(REFERENCES)

demo.launch(share = True)

## logo: <img src="https://i.ibb.co/vcG9kr0/vojlogo.jpg" alt="vojlogo" border="0">
## cactus: <img src="https://i.ibb.co/3sW2mJN/spur.jpg" alt="spur" border="0">