VOIDER commited on
Commit
ceb655b
·
verified ·
1 Parent(s): 4cc53ed

Upload 3 files

Browse files
Files changed (1) hide show
  1. utils/scoring.py +77 -0
utils/scoring.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import logging
3
+
4
+ logger = logging.getLogger(__name__)
5
+
6
+ def calculate_final_score(
7
+ quality_score: float,
8
+ aesthetics_score: float,
9
+ prompt_score: float,
10
+ ai_detection_score: float,
11
+ has_prompt: bool = True
12
+ ) -> float:
13
+ """
14
+ Calculate weighted composite score for image evaluation.
15
+
16
+ Args:
17
+ quality_score: Technical image quality (0-10)
18
+ aesthetics_score: Visual appeal score (0-10)
19
+ prompt_score: Prompt adherence score (0-10)
20
+ ai_detection_score: AI generation probability (0-1)
21
+ has_prompt: Whether prompt metadata is available
22
+
23
+ Returns:
24
+ Final composite score (0-10)
25
+ """
26
+ try:
27
+ # Validate and clamp input scores
28
+ quality_score = max(0.0, min(10.0, quality_score))
29
+ aesthetics_score = max(0.0, min(10.0, aesthetics_score))
30
+ prompt_score = max(0.0, min(10.0, prompt_score))
31
+ ai_detection_score = max(0.0, min(1.0, ai_detection_score))
32
+
33
+ # FIX: Invert and scale the AI detection score to a 0-10 range
34
+ # A low AI detection probability (good) results in a high score.
35
+ inverted_ai_score = (1 - ai_detection_score) * 10
36
+
37
+ if has_prompt:
38
+ # Standard weights when prompt is available
39
+ weights = {
40
+ 'quality': 0.25, # 25% - Technical quality
41
+ 'aesthetics': 0.35, # 35% - Visual appeal (highest weight)
42
+ 'prompt': 0.25, # 25% - Prompt following
43
+ 'ai_detection': 0.15 # 15% - Authenticity (inverted detection score)
44
+ }
45
+
46
+ # FIX: Correctly calculate the weighted score. The sum of weights is 1.0.
47
+ score = (
48
+ quality_score * weights['quality'] +
49
+ aesthetics_score * weights['aesthetics'] +
50
+ prompt_score * weights['prompt'] +
51
+ inverted_ai_score * weights['ai_detection']
52
+ )
53
+ else:
54
+ # Redistribute prompt weight when no prompt available
55
+ weights = {
56
+ 'quality': 0.375, # 25% + 12.5% from prompt
57
+ 'aesthetics': 0.475, # 35% + 12.5% from prompt
58
+ 'ai_detection': 0.15 # 15% - Authenticity
59
+ }
60
+
61
+ # FIX: Correctly calculate the weighted score without prompt. Sum of weights is 1.0.
62
+ score = (
63
+ quality_score * weights['quality'] +
64
+ aesthetics_score * weights['aesthetics'] +
65
+ inverted_ai_score * weights['ai_detection']
66
+ )
67
+
68
+ # Ensure final score is within the valid 0-10 range
69
+ final_score = max(0.0, min(10.0, score))
70
+
71
+ logger.debug(f"Score calculation - Final: {final_score:.2f}")
72
+
73
+ return final_score
74
+
75
+ except Exception as e:
76
+ logger.error(f"Error calculating final score: {str(e)}")
77
+ return 0.0 # Return 0.0 on error to clearly indicate failure