image-evaluation-tool / models /prompt_evaluator.py
VOIDER's picture
Upload 14 files
83b7522 verified
raw
history blame
12.2 kB
import torch
import numpy as np
from PIL import Image
import clip
from transformers import BlipProcessor, BlipForConditionalGeneration
import logging
from sentence_transformers import SentenceTransformer, util
logger = logging.getLogger(__name__)
class PromptEvaluator:
"""Prompt following assessment using CLIP and other vision-language models"""
def __init__(self):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.models = {}
self.processors = {}
self.load_models()
def load_models(self):
"""Load prompt evaluation models"""
try:
# Load CLIP model (primary)
logger.info("Loading CLIP model...")
self.load_clip()
# Load BLIP-2 model (secondary)
logger.info("Loading BLIP-2 model...")
self.load_blip2()
# Load sentence transformer for text similarity
logger.info("Loading sentence transformer...")
self.load_sentence_transformer()
except Exception as e:
logger.error(f"Error loading prompt evaluation models: {str(e)}")
self.use_fallback_implementation()
def load_clip(self):
"""Load CLIP model"""
try:
model, preprocess = clip.load("ViT-B/32", device=self.device)
self.models['clip'] = model
self.processors['clip'] = preprocess
logger.info("CLIP model loaded successfully")
except Exception as e:
logger.warning(f"Could not load CLIP: {str(e)}")
def load_blip2(self):
"""Load BLIP-2 model"""
try:
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model = model.to(self.device)
self.models['blip2'] = model
self.processors['blip2'] = processor
logger.info("BLIP-2 model loaded successfully")
except Exception as e:
logger.warning(f"Could not load BLIP-2: {str(e)}")
def load_sentence_transformer(self):
"""Load sentence transformer for text similarity"""
try:
model = SentenceTransformer('all-MiniLM-L6-v2')
self.models['sentence_transformer'] = model
logger.info("Sentence transformer loaded successfully")
except Exception as e:
logger.warning(f"Could not load sentence transformer: {str(e)}")
def use_fallback_implementation(self):
"""Use simple fallback prompt evaluation"""
logger.info("Using fallback prompt evaluation implementation")
self.fallback_mode = True
def evaluate_with_clip(self, image: Image.Image, prompt: str) -> float:
"""Evaluate prompt following using CLIP"""
try:
if 'clip' not in self.models:
return self.fallback_prompt_score(image, prompt)
model = self.models['clip']
preprocess = self.processors['clip']
# Preprocess image
image_tensor = preprocess(image).unsqueeze(0).to(self.device)
# Tokenize text
text_tokens = clip.tokenize([prompt]).to(self.device)
# Get features
with torch.no_grad():
image_features = model.encode_image(image_tensor)
text_features = model.encode_text(text_tokens)
# Normalize features
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
# Calculate similarity
similarity = (image_features @ text_features.T).item()
# Convert similarity to 0-10 scale
# CLIP similarity is typically between -1 and 1, but usually 0-1 for related content
score = max(0.0, min(10.0, (similarity + 1) * 5))
return score
except Exception as e:
logger.error(f"Error in CLIP evaluation: {str(e)}")
return self.fallback_prompt_score(image, prompt)
def evaluate_with_blip2(self, image: Image.Image, prompt: str) -> float:
"""Evaluate prompt following using BLIP-2"""
try:
if 'blip2' not in self.models:
return self.fallback_prompt_score(image, prompt)
model = self.models['blip2']
processor = self.processors['blip2']
# Generate caption for the image
inputs = processor(image, return_tensors="pt").to(self.device)
with torch.no_grad():
out = model.generate(**inputs, max_length=50)
generated_caption = processor.decode(out[0], skip_special_tokens=True)
# Compare generated caption with original prompt using text similarity
if 'sentence_transformer' in self.models:
similarity_score = self.calculate_text_similarity(prompt, generated_caption)
else:
# Simple word overlap fallback
similarity_score = self.simple_text_similarity(prompt, generated_caption)
return similarity_score
except Exception as e:
logger.error(f"Error in BLIP-2 evaluation: {str(e)}")
return self.fallback_prompt_score(image, prompt)
def calculate_text_similarity(self, text1: str, text2: str) -> float:
"""Calculate semantic similarity between two texts"""
try:
model = self.models['sentence_transformer']
# Encode texts
embeddings = model.encode([text1, text2])
# Calculate cosine similarity
similarity = util.cos_sim(embeddings[0], embeddings[1]).item()
# Convert to 0-10 scale
score = max(0.0, min(10.0, (similarity + 1) * 5))
return score
except Exception as e:
logger.error(f"Error calculating text similarity: {str(e)}")
return self.simple_text_similarity(text1, text2)
def simple_text_similarity(self, text1: str, text2: str) -> float:
"""Simple word overlap similarity"""
try:
# Convert to lowercase and split into words
words1 = set(text1.lower().split())
words2 = set(text2.lower().split())
# Calculate Jaccard similarity
intersection = len(words1.intersection(words2))
union = len(words1.union(words2))
if union == 0:
return 0.0
jaccard_similarity = intersection / union
# Convert to 0-10 scale
score = jaccard_similarity * 10
return max(0.0, min(10.0, score))
except Exception:
return 5.0 # Default neutral score
def extract_key_concepts(self, prompt: str) -> list:
"""Extract key concepts from prompt for detailed analysis"""
try:
# Simple keyword extraction
# In production, this could use more sophisticated NLP
# Remove common words
stop_words = {'a', 'an', 'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'could', 'should'}
words = prompt.lower().split()
key_concepts = [word for word in words if word not in stop_words and len(word) > 2]
return key_concepts
except Exception:
return []
def evaluate_concept_presence(self, image: Image.Image, concepts: list) -> float:
"""Evaluate presence of specific concepts in image"""
try:
if 'clip' not in self.models or not concepts:
return 5.0
model = self.models['clip']
preprocess = self.processors['clip']
# Preprocess image
image_tensor = preprocess(image).unsqueeze(0).to(self.device)
# Create concept queries
concept_queries = [f"a photo of {concept}" for concept in concepts]
# Tokenize concepts
text_tokens = clip.tokenize(concept_queries).to(self.device)
# Get features
with torch.no_grad():
image_features = model.encode_image(image_tensor)
text_features = model.encode_text(text_tokens)
# Normalize features
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
# Calculate similarities
similarities = (image_features @ text_features.T).squeeze(0)
# Average similarity across concepts
avg_similarity = similarities.mean().item()
# Convert to 0-10 scale
score = max(0.0, min(10.0, (avg_similarity + 1) * 5))
return score
except Exception as e:
logger.error(f"Error in concept presence evaluation: {str(e)}")
return 5.0
def fallback_prompt_score(self, image: Image.Image, prompt: str) -> float:
"""Simple fallback prompt evaluation"""
try:
# Very basic evaluation based on prompt length and image properties
prompt_length = len(prompt.split())
# Longer, more detailed prompts might be harder to follow perfectly
if prompt_length < 5:
length_penalty = 0.0
elif prompt_length < 15:
length_penalty = 0.5
else:
length_penalty = 1.0
# Base score
base_score = 7.0 - length_penalty
return max(0.0, min(10.0, base_score))
except Exception:
return 5.0 # Default neutral score
def evaluate(self, image: Image.Image, prompt: str) -> float:
"""
Evaluate how well the image follows the given prompt
Args:
image: PIL Image to evaluate
prompt: Text prompt to compare against
Returns:
Prompt following score from 0-10
"""
try:
if not prompt or not prompt.strip():
return 0.0 # No prompt to evaluate against
scores = []
# CLIP evaluation (primary)
clip_score = self.evaluate_with_clip(image, prompt)
scores.append(clip_score)
# BLIP-2 evaluation (secondary)
blip2_score = self.evaluate_with_blip2(image, prompt)
scores.append(blip2_score)
# Concept presence evaluation
key_concepts = self.extract_key_concepts(prompt)
concept_score = self.evaluate_concept_presence(image, key_concepts)
scores.append(concept_score)
# Ensemble scoring
weights = [0.5, 0.3, 0.2] # CLIP gets highest weight
final_score = sum(score * weight for score, weight in zip(scores, weights))
logger.info(f"Prompt scores - CLIP: {clip_score:.2f}, BLIP-2: {blip2_score:.2f}, "
f"Concepts: {concept_score:.2f}, Final: {final_score:.2f}")
return max(0.0, min(10.0, final_score))
except Exception as e:
logger.error(f"Error in prompt evaluation: {str(e)}")
return self.fallback_prompt_score(image, prompt)