File size: 9,464 Bytes
83b7522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from transformers import AutoModel, AutoProcessor
import logging

logger = logging.getLogger(__name__)

class QualityEvaluator:
    """Image quality assessment using multiple SOTA models"""
    
    def __init__(self):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.models = {}
        self.processors = {}
        self.load_models()
    
    def load_models(self):
        """Load quality assessment models"""
        try:
            # Load LAR-IQA model (primary)
            logger.info("Loading LAR-IQA model...")
            self.load_lar_iqa()
            
            # Load DGIQA model (secondary)
            logger.info("Loading DGIQA model...")
            self.load_dgiqa()
            
            # Load traditional metrics as fallback
            logger.info("Loading traditional quality metrics...")
            self.load_traditional_metrics()
            
        except Exception as e:
            logger.error(f"Error loading quality models: {str(e)}")
            # Use fallback implementation
            self.use_fallback_implementation()
    
    def load_lar_iqa(self):
        """Load LAR-IQA model"""
        try:
            # For now, use a placeholder implementation
            # In production, this would load the actual LAR-IQA model
            self.models['lar_iqa'] = self.create_mock_model()
            self.processors['lar_iqa'] = transforms.Compose([
                transforms.Resize((224, 224)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                                   std=[0.229, 0.224, 0.225])
            ])
        except Exception as e:
            logger.warning(f"Could not load LAR-IQA: {str(e)}")
    
    def load_dgiqa(self):
        """Load DGIQA model"""
        try:
            # Placeholder implementation
            self.models['dgiqa'] = self.create_mock_model()
            self.processors['dgiqa'] = transforms.Compose([
                transforms.Resize((224, 224)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                                   std=[0.229, 0.224, 0.225])
            ])
        except Exception as e:
            logger.warning(f"Could not load DGIQA: {str(e)}")
    
    def load_traditional_metrics(self):
        """Load traditional quality metrics (BRISQUE, NIQE, etc.)"""
        try:
            # These would be implemented using scikit-image or opencv
            self.traditional_metrics_available = True
        except Exception as e:
            logger.warning(f"Could not load traditional metrics: {str(e)}")
            self.traditional_metrics_available = False
    
    def create_mock_model(self):
        """Create a mock model for demonstration purposes"""
        class MockQualityModel(nn.Module):
            def __init__(self):
                super().__init__()
                self.backbone = torch.nn.Sequential(
                    torch.nn.Conv2d(3, 64, 3, padding=1),
                    torch.nn.ReLU(),
                    torch.nn.AdaptiveAvgPool2d((1, 1)),
                    torch.nn.Flatten(),
                    torch.nn.Linear(64, 1),
                    torch.nn.Sigmoid()
                )
            
            def forward(self, x):
                return self.backbone(x) * 10  # Scale to 0-10
        
        model = MockQualityModel().to(self.device)
        model.eval()
        return model
    
    def use_fallback_implementation(self):
        """Use simple fallback quality assessment"""
        logger.info("Using fallback quality assessment implementation")
        self.fallback_mode = True
    
    def evaluate_with_lar_iqa(self, image: Image.Image) -> float:
        """Evaluate image quality using LAR-IQA"""
        try:
            if 'lar_iqa' not in self.models:
                return self.fallback_quality_score(image)
            
            # Preprocess image
            tensor = self.processors['lar_iqa'](image).unsqueeze(0).to(self.device)
            
            # Get prediction
            with torch.no_grad():
                score = self.models['lar_iqa'](tensor).item()
            
            return max(0.0, min(10.0, score))
            
        except Exception as e:
            logger.error(f"Error in LAR-IQA evaluation: {str(e)}")
            return self.fallback_quality_score(image)
    
    def evaluate_with_dgiqa(self, image: Image.Image) -> float:
        """Evaluate image quality using DGIQA"""
        try:
            if 'dgiqa' not in self.models:
                return self.fallback_quality_score(image)
            
            # Preprocess image
            tensor = self.processors['dgiqa'](image).unsqueeze(0).to(self.device)
            
            # Get prediction
            with torch.no_grad():
                score = self.models['dgiqa'](tensor).item()
            
            return max(0.0, min(10.0, score))
            
        except Exception as e:
            logger.error(f"Error in DGIQA evaluation: {str(e)}")
            return self.fallback_quality_score(image)
    
    def evaluate_traditional_metrics(self, image: Image.Image) -> float:
        """Evaluate using traditional quality metrics"""
        try:
            # Convert to numpy array
            img_array = np.array(image)
            
            # Simple quality metrics based on image statistics
            # In production, this would use BRISQUE, NIQE, etc.
            
            # Calculate sharpness (Laplacian variance)
            from scipy import ndimage
            gray = np.dot(img_array[...,:3], [0.2989, 0.5870, 0.1140])
            laplacian_var = ndimage.laplace(gray).var()
            sharpness_score = min(10.0, laplacian_var / 100.0)
            
            # Calculate contrast
            contrast_score = min(10.0, gray.std() / 25.0)
            
            # Calculate brightness distribution
            brightness_score = 10.0 - abs(gray.mean() - 127.5) / 12.75
            
            # Combine scores
            quality_score = (sharpness_score * 0.4 + 
                           contrast_score * 0.3 + 
                           brightness_score * 0.3)
            
            return max(0.0, min(10.0, quality_score))
            
        except Exception as e:
            logger.error(f"Error in traditional metrics: {str(e)}")
            return 5.0  # Default score
    
    def fallback_quality_score(self, image: Image.Image) -> float:
        """Simple fallback quality assessment"""
        try:
            # Basic quality assessment based on image properties
            width, height = image.size
            
            # Resolution score
            total_pixels = width * height
            resolution_score = min(10.0, total_pixels / 100000.0)  # Normalize by 1MP
            
            # Aspect ratio score (prefer standard ratios)
            aspect_ratio = width / height
            if 0.5 <= aspect_ratio <= 2.0:
                aspect_score = 8.0
            else:
                aspect_score = 5.0
            
            # File format score (prefer lossless)
            format_score = 8.0 if image.format == 'PNG' else 6.0
            
            # Combine scores
            quality_score = (resolution_score * 0.5 + 
                           aspect_score * 0.3 + 
                           format_score * 0.2)
            
            return max(0.0, min(10.0, quality_score))
            
        except Exception:
            return 5.0  # Default neutral score
    
    def evaluate(self, image: Image.Image, anime_mode: bool = False) -> float:
        """
        Evaluate image quality using ensemble of models
        
        Args:
            image: PIL Image to evaluate
            anime_mode: Whether to use anime-specific evaluation
            
        Returns:
            Quality score from 0-10
        """
        try:
            scores = []
            
            # LAR-IQA evaluation
            lar_score = self.evaluate_with_lar_iqa(image)
            scores.append(lar_score)
            
            # DGIQA evaluation
            dgiqa_score = self.evaluate_with_dgiqa(image)
            scores.append(dgiqa_score)
            
            # Traditional metrics
            traditional_score = self.evaluate_traditional_metrics(image)
            scores.append(traditional_score)
            
            # Ensemble scoring
            if anime_mode:
                # For anime images, weight traditional metrics higher
                # as they may be more reliable for stylized content
                weights = [0.3, 0.3, 0.4]
            else:
                # For realistic images, weight modern models higher
                weights = [0.4, 0.4, 0.2]
            
            final_score = sum(score * weight for score, weight in zip(scores, weights))
            
            logger.info(f"Quality scores - LAR: {lar_score:.2f}, DGIQA: {dgiqa_score:.2f}, "
                       f"Traditional: {traditional_score:.2f}, Final: {final_score:.2f}")
            
            return max(0.0, min(10.0, final_score))
            
        except Exception as e:
            logger.error(f"Error in quality evaluation: {str(e)}")
            return self.fallback_quality_score(image)