File size: 12,633 Bytes
83b7522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from transformers import AutoModel, AutoProcessor
import logging

logger = logging.getLogger(__name__)

class AestheticsEvaluator:
    """Image aesthetics assessment using multiple SOTA models"""
    
    def __init__(self):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.models = {}
        self.processors = {}
        self.load_models()
    
    def load_models(self):
        """Load aesthetics assessment models"""
        try:
            # Load UNIAA model (primary)
            logger.info("Loading UNIAA model...")
            self.load_uniaa()
            
            # Load MUSIQ model (secondary)
            logger.info("Loading MUSIQ model...")
            self.load_musiq()
            
            # Load anime-specific aesthetic model
            logger.info("Loading anime aesthetic model...")
            self.load_anime_aesthetic_model()
            
        except Exception as e:
            logger.error(f"Error loading aesthetic models: {str(e)}")
            self.use_fallback_implementation()
    
    def load_uniaa(self):
        """Load UNIAA model"""
        try:
            # Placeholder implementation for UNIAA
            self.models['uniaa'] = self.create_mock_aesthetic_model()
            self.processors['uniaa'] = transforms.Compose([
                transforms.Resize((224, 224)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                                   std=[0.229, 0.224, 0.225])
            ])
        except Exception as e:
            logger.warning(f"Could not load UNIAA: {str(e)}")
    
    def load_musiq(self):
        """Load MUSIQ model"""
        try:
            # Placeholder implementation for MUSIQ
            self.models['musiq'] = self.create_mock_aesthetic_model()
            self.processors['musiq'] = transforms.Compose([
                transforms.Resize((224, 224)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                                   std=[0.229, 0.224, 0.225])
            ])
        except Exception as e:
            logger.warning(f"Could not load MUSIQ: {str(e)}")
    
    def load_anime_aesthetic_model(self):
        """Load anime-specific aesthetic model"""
        try:
            # Placeholder for anime-specific model
            self.models['anime_aesthetic'] = self.create_mock_aesthetic_model()
            self.processors['anime_aesthetic'] = transforms.Compose([
                transforms.Resize((224, 224)),
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                                   std=[0.229, 0.224, 0.225])
            ])
        except Exception as e:
            logger.warning(f"Could not load anime aesthetic model: {str(e)}")
    
    def create_mock_aesthetic_model(self):
        """Create a mock aesthetic model for demonstration"""
        class MockAestheticModel(nn.Module):
            def __init__(self):
                super().__init__()
                self.backbone = torch.nn.Sequential(
                    torch.nn.Conv2d(3, 64, 3, padding=1),
                    torch.nn.ReLU(),
                    torch.nn.Conv2d(64, 128, 3, padding=1),
                    torch.nn.ReLU(),
                    torch.nn.AdaptiveAvgPool2d((1, 1)),
                    torch.nn.Flatten(),
                    torch.nn.Linear(128, 64),
                    torch.nn.ReLU(),
                    torch.nn.Linear(64, 1),
                    torch.nn.Sigmoid()
                )
            
            def forward(self, x):
                return self.backbone(x) * 10  # Scale to 0-10
        
        model = MockAestheticModel().to(self.device)
        model.eval()
        return model
    
    def use_fallback_implementation(self):
        """Use simple fallback aesthetic assessment"""
        logger.info("Using fallback aesthetic assessment implementation")
        self.fallback_mode = True
    
    def evaluate_with_uniaa(self, image: Image.Image) -> float:
        """Evaluate aesthetics using UNIAA"""
        try:
            if 'uniaa' not in self.models:
                return self.fallback_aesthetic_score(image)
            
            # Preprocess image
            tensor = self.processors['uniaa'](image).unsqueeze(0).to(self.device)
            
            # Get prediction
            with torch.no_grad():
                score = self.models['uniaa'](tensor).item()
            
            return max(0.0, min(10.0, score))
            
        except Exception as e:
            logger.error(f"Error in UNIAA evaluation: {str(e)}")
            return self.fallback_aesthetic_score(image)
    
    def evaluate_with_musiq(self, image: Image.Image) -> float:
        """Evaluate aesthetics using MUSIQ"""
        try:
            if 'musiq' not in self.models:
                return self.fallback_aesthetic_score(image)
            
            # Preprocess image
            tensor = self.processors['musiq'](image).unsqueeze(0).to(self.device)
            
            # Get prediction
            with torch.no_grad():
                score = self.models['musiq'](tensor).item()
            
            return max(0.0, min(10.0, score))
            
        except Exception as e:
            logger.error(f"Error in MUSIQ evaluation: {str(e)}")
            return self.fallback_aesthetic_score(image)
    
    def evaluate_with_anime_model(self, image: Image.Image) -> float:
        """Evaluate aesthetics using anime-specific model"""
        try:
            if 'anime_aesthetic' not in self.models:
                return self.fallback_aesthetic_score(image)
            
            # Preprocess image
            tensor = self.processors['anime_aesthetic'](image).unsqueeze(0).to(self.device)
            
            # Get prediction
            with torch.no_grad():
                score = self.models['anime_aesthetic'](tensor).item()
            
            return max(0.0, min(10.0, score))
            
        except Exception as e:
            logger.error(f"Error in anime aesthetic evaluation: {str(e)}")
            return self.fallback_aesthetic_score(image)
    
    def evaluate_composition_rules(self, image: Image.Image) -> float:
        """Evaluate based on composition rules (rule of thirds, etc.)"""
        try:
            # Convert to numpy array
            img_array = np.array(image)
            height, width = img_array.shape[:2]
            
            # Convert to grayscale for analysis
            if len(img_array.shape) == 3:
                gray = np.dot(img_array[...,:3], [0.2989, 0.5870, 0.1140])
            else:
                gray = img_array
            
            # Rule of thirds analysis
            third_h, third_w = height // 3, width // 3
            
            # Check for interesting content at rule of thirds intersections
            intersections = [
                (third_h, third_w), (third_h, 2*third_w),
                (2*third_h, third_w), (2*third_h, 2*third_w)
            ]
            
            composition_score = 0.0
            for y, x in intersections:
                # Check local variance around intersection points
                region = gray[max(0, y-10):min(height, y+10), 
                             max(0, x-10):min(width, x+10)]
                if region.size > 0:
                    composition_score += region.var()
            
            # Normalize composition score
            composition_score = min(10.0, composition_score / 1000.0)
            
            # Color harmony analysis
            if len(img_array.shape) == 3:
                # Calculate color distribution
                colors = img_array.reshape(-1, 3)
                color_std = np.std(colors, axis=0).mean()
                color_harmony_score = min(10.0, color_std / 25.0)
            else:
                color_harmony_score = 5.0
            
            # Combine scores
            final_score = (composition_score * 0.6 + color_harmony_score * 0.4)
            
            return max(0.0, min(10.0, final_score))
            
        except Exception as e:
            logger.error(f"Error in composition analysis: {str(e)}")
            return 5.0
    
    def fallback_aesthetic_score(self, image: Image.Image) -> float:
        """Simple fallback aesthetic assessment"""
        try:
            # Basic aesthetic assessment based on image properties
            width, height = image.size
            
            # Aspect ratio score (prefer aesthetically pleasing ratios)
            aspect_ratio = width / height
            golden_ratio = 1.618
            
            if abs(aspect_ratio - golden_ratio) < 0.1 or abs(aspect_ratio - 1/golden_ratio) < 0.1:
                aspect_score = 9.0
            elif 0.7 <= aspect_ratio <= 1.4:  # Square-ish
                aspect_score = 7.0
            elif 1.4 <= aspect_ratio <= 2.0:  # Landscape
                aspect_score = 8.0
            else:
                aspect_score = 5.0
            
            # Resolution score (higher resolution often looks better)
            total_pixels = width * height
            resolution_score = min(10.0, total_pixels / 200000.0)  # Normalize by 2MP
            
            # Color analysis
            img_array = np.array(image)
            if len(img_array.shape) == 3:
                # Color variety score
                unique_colors = len(np.unique(img_array.reshape(-1, 3), axis=0))
                color_variety_score = min(10.0, unique_colors / 1000.0)
                
                # Brightness distribution
                brightness = np.mean(img_array, axis=2)
                brightness_score = 10.0 - abs(brightness.mean() - 127.5) / 12.75
            else:
                color_variety_score = 5.0
                brightness_score = 5.0
            
            # Combine scores
            aesthetic_score = (aspect_score * 0.3 + 
                             resolution_score * 0.2 + 
                             color_variety_score * 0.3 + 
                             brightness_score * 0.2)
            
            return max(0.0, min(10.0, aesthetic_score))
            
        except Exception:
            return 5.0  # Default neutral score
    
    def evaluate(self, image: Image.Image, anime_mode: bool = False) -> float:
        """
        Evaluate image aesthetics using ensemble of models
        
        Args:
            image: PIL Image to evaluate
            anime_mode: Whether to use anime-specific evaluation
            
        Returns:
            Aesthetic score from 0-10
        """
        try:
            scores = []
            
            if anime_mode:
                # For anime images, prioritize anime-specific model
                anime_score = self.evaluate_with_anime_model(image)
                scores.append(anime_score)
                
                # Also use general models but with lower weight
                uniaa_score = self.evaluate_with_uniaa(image)
                scores.append(uniaa_score)
                
                # Composition rules
                composition_score = self.evaluate_composition_rules(image)
                scores.append(composition_score)
                
                # Weights for anime mode
                weights = [0.5, 0.3, 0.2]
                
            else:
                # For realistic images, use general aesthetic models
                uniaa_score = self.evaluate_with_uniaa(image)
                scores.append(uniaa_score)
                
                musiq_score = self.evaluate_with_musiq(image)
                scores.append(musiq_score)
                
                # Composition rules
                composition_score = self.evaluate_composition_rules(image)
                scores.append(composition_score)
                
                # Weights for realistic mode
                weights = [0.4, 0.4, 0.2]
            
            # Ensemble scoring
            final_score = sum(score * weight for score, weight in zip(scores, weights))
            
            logger.info(f"Aesthetic scores - Scores: {scores}, Final: {final_score:.2f}")
            
            return max(0.0, min(10.0, final_score))
            
        except Exception as e:
            logger.error(f"Error in aesthetic evaluation: {str(e)}")
            return self.fallback_aesthetic_score(image)