Spaces:
Running
Running
File size: 12,476 Bytes
83b7522 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import numpy as np
import logging
logger = logging.getLogger(__name__)
def calculate_final_score(
quality_score: float,
aesthetics_score: float,
prompt_score: float,
ai_detection_score: float,
has_prompt: bool = True
) -> float:
"""
Calculate weighted composite score for image evaluation
Args:
quality_score: Technical image quality (0-10)
aesthetics_score: Visual appeal score (0-10)
prompt_score: Prompt adherence score (0-10)
ai_detection_score: AI generation probability (0-1)
has_prompt: Whether prompt metadata is available
Returns:
Final composite score (0-10)
"""
try:
# Validate input scores
quality_score = max(0.0, min(10.0, quality_score))
aesthetics_score = max(0.0, min(10.0, aesthetics_score))
prompt_score = max(0.0, min(10.0, prompt_score))
ai_detection_score = max(0.0, min(1.0, ai_detection_score))
if has_prompt:
# Standard weights when prompt is available
weights = {
'quality': 0.25, # 25% - Technical quality
'aesthetics': 0.35, # 35% - Visual appeal (highest weight)
'prompt': 0.25, # 25% - Prompt following
'ai_detection': 0.15 # 15% - AI detection (inverted)
}
# Calculate weighted score
score = (
quality_score * weights['quality'] +
aesthetics_score * weights['aesthetics'] +
prompt_score * weights['prompt'] +
(1 - ai_detection_score) * weights['ai_detection']
)
else:
# Redistribute prompt weight when no prompt available
weights = {
'quality': 0.375, # 25% + 12.5% from prompt
'aesthetics': 0.475, # 35% + 12.5% from prompt
'ai_detection': 0.15 # 15% - AI detection (inverted)
}
# Calculate weighted score without prompt
score = (
quality_score * weights['quality'] +
aesthetics_score * weights['aesthetics'] +
(1 - ai_detection_score) * weights['ai_detection']
)
# Ensure score is in valid range
final_score = max(0.0, min(10.0, score))
logger.debug(f"Score calculation - Quality: {quality_score:.2f}, "
f"Aesthetics: {aesthetics_score:.2f}, Prompt: {prompt_score:.2f}, "
f"AI Detection: {ai_detection_score:.3f}, Has Prompt: {has_prompt}, "
f"Final: {final_score:.2f}")
return final_score
except Exception as e:
logger.error(f"Error calculating final score: {str(e)}")
return 5.0 # Default neutral score
def calculate_category_rankings(scores_list: list, category: str) -> list:
"""
Calculate rankings for a specific category
Args:
scores_list: List of score dictionaries
category: Category to rank by ('quality_score', 'aesthetics_score', etc.)
Returns:
List of rankings (1-based)
"""
try:
if not scores_list or category not in scores_list[0]:
return [1] * len(scores_list)
# Extract scores for the category
category_scores = [item[category] for item in scores_list]
# Calculate rankings (higher score = better rank)
rankings = []
for i, score in enumerate(category_scores):
rank = 1
for j, other_score in enumerate(category_scores):
if other_score > score:
rank += 1
rankings.append(rank)
return rankings
except Exception as e:
logger.error(f"Error calculating category rankings: {str(e)}")
return list(range(1, len(scores_list) + 1))
def normalize_scores(scores: list, target_range: tuple = (0, 10)) -> list:
"""
Normalize a list of scores to a target range
Args:
scores: List of numerical scores
target_range: Tuple of (min, max) for target range
Returns:
List of normalized scores
"""
try:
if not scores:
return []
min_score = min(scores)
max_score = max(scores)
# Avoid division by zero
if max_score == min_score:
return [target_range[1]] * len(scores)
target_min, target_max = target_range
target_span = target_max - target_min
score_span = max_score - min_score
normalized = []
for score in scores:
normalized_score = target_min + (score - min_score) * target_span / score_span
normalized.append(max(target_min, min(target_max, normalized_score)))
return normalized
except Exception as e:
logger.error(f"Error normalizing scores: {str(e)}")
return scores
def calculate_confidence_intervals(scores: list, confidence_level: float = 0.95) -> dict:
"""
Calculate confidence intervals for a list of scores
Args:
scores: List of numerical scores
confidence_level: Confidence level (0-1)
Returns:
Dictionary with mean, std, lower_bound, upper_bound
"""
try:
if not scores:
return {'mean': 0, 'std': 0, 'lower_bound': 0, 'upper_bound': 0}
mean_score = np.mean(scores)
std_score = np.std(scores)
# Calculate confidence interval using t-distribution
from scipy import stats
n = len(scores)
t_value = stats.t.ppf((1 + confidence_level) / 2, n - 1)
margin_error = t_value * std_score / np.sqrt(n)
return {
'mean': float(mean_score),
'std': float(std_score),
'lower_bound': float(mean_score - margin_error),
'upper_bound': float(mean_score + margin_error)
}
except Exception as e:
logger.error(f"Error calculating confidence intervals: {str(e)}")
return {'mean': 0, 'std': 0, 'lower_bound': 0, 'upper_bound': 0}
def detect_outliers(scores: list, method: str = 'iqr') -> list:
"""
Detect outliers in a list of scores
Args:
scores: List of numerical scores
method: Method to use ('iqr', 'zscore', 'modified_zscore')
Returns:
List of boolean values indicating outliers
"""
try:
if not scores or len(scores) < 3:
return [False] * len(scores)
scores_array = np.array(scores)
if method == 'iqr':
# Interquartile Range method
q1 = np.percentile(scores_array, 25)
q3 = np.percentile(scores_array, 75)
iqr = q3 - q1
lower_bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
outliers = (scores_array < lower_bound) | (scores_array > upper_bound)
elif method == 'zscore':
# Z-score method
z_scores = np.abs(stats.zscore(scores_array))
outliers = z_scores > 2.5
elif method == 'modified_zscore':
# Modified Z-score method (more robust)
median = np.median(scores_array)
mad = np.median(np.abs(scores_array - median))
modified_z_scores = 0.6745 * (scores_array - median) / mad
outliers = np.abs(modified_z_scores) > 3.5
else:
outliers = [False] * len(scores)
return outliers.tolist()
except Exception as e:
logger.error(f"Error detecting outliers: {str(e)}")
return [False] * len(scores)
def calculate_score_distribution(scores: list) -> dict:
"""
Calculate distribution statistics for scores
Args:
scores: List of numerical scores
Returns:
Dictionary with distribution statistics
"""
try:
if not scores:
return {}
scores_array = np.array(scores)
distribution = {
'count': len(scores),
'mean': float(np.mean(scores_array)),
'median': float(np.median(scores_array)),
'std': float(np.std(scores_array)),
'min': float(np.min(scores_array)),
'max': float(np.max(scores_array)),
'q1': float(np.percentile(scores_array, 25)),
'q3': float(np.percentile(scores_array, 75)),
'skewness': float(stats.skew(scores_array)),
'kurtosis': float(stats.kurtosis(scores_array))
}
return distribution
except Exception as e:
logger.error(f"Error calculating score distribution: {str(e)}")
return {}
def apply_score_adjustments(
scores: dict,
adjustments: dict = None
) -> dict:
"""
Apply custom score adjustments based on specific criteria
Args:
scores: Dictionary of scores
adjustments: Dictionary of adjustment parameters
Returns:
Dictionary of adjusted scores
"""
try:
if adjustments is None:
adjustments = {}
adjusted_scores = scores.copy()
# Apply anime mode adjustments
if adjustments.get('anime_mode', False):
# Boost aesthetics score for anime images
if 'aesthetics_score' in adjusted_scores:
adjusted_scores['aesthetics_score'] *= 1.1
adjusted_scores['aesthetics_score'] = min(10.0, adjusted_scores['aesthetics_score'])
# Apply quality penalties for low resolution
if adjustments.get('penalize_low_resolution', True):
width = adjustments.get('width', 1024)
height = adjustments.get('height', 1024)
total_pixels = width * height
if total_pixels < 262144: # Less than 512x512
penalty = 0.8
if 'quality_score' in adjusted_scores:
adjusted_scores['quality_score'] *= penalty
# Apply prompt complexity adjustments
prompt_length = adjustments.get('prompt_length', 0)
if prompt_length > 0 and 'prompt_score' in adjusted_scores:
if prompt_length > 100: # Very long prompts are harder to follow
adjusted_scores['prompt_score'] *= 0.95
elif prompt_length < 10: # Very short prompts are easier
adjusted_scores['prompt_score'] *= 1.05
adjusted_scores['prompt_score'] = min(10.0, adjusted_scores['prompt_score'])
return adjusted_scores
except Exception as e:
logger.error(f"Error applying score adjustments: {str(e)}")
return scores
def generate_score_summary(results_list: list) -> dict:
"""
Generate summary statistics for a batch of evaluation results
Args:
results_list: List of result dictionaries
Returns:
Dictionary with summary statistics
"""
try:
if not results_list:
return {}
# Extract scores by category
categories = ['quality_score', 'aesthetics_score', 'prompt_score', 'ai_detection_score', 'final_score']
summary = {}
for category in categories:
if category in results_list[0]:
scores = [result[category] for result in results_list if category in result]
if scores:
summary[category] = calculate_score_distribution(scores)
# Calculate overall statistics
final_scores = [result['final_score'] for result in results_list if 'final_score' in result]
if final_scores:
summary['overall'] = {
'total_images': len(results_list),
'average_score': np.mean(final_scores),
'best_score': max(final_scores),
'worst_score': min(final_scores),
'score_range': max(final_scores) - min(final_scores),
'images_with_prompts': sum(1 for r in results_list if r.get('has_prompt', False))
}
return summary
except Exception as e:
logger.error(f"Error generating score summary: {str(e)}")
return {}
|