File size: 12,205 Bytes
83b7522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import torch
import numpy as np
from PIL import Image
import clip
from transformers import BlipProcessor, BlipForConditionalGeneration
import logging
from sentence_transformers import SentenceTransformer, util

logger = logging.getLogger(__name__)

class PromptEvaluator:
    """Prompt following assessment using CLIP and other vision-language models"""
    
    def __init__(self):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        self.models = {}
        self.processors = {}
        self.load_models()
    
    def load_models(self):
        """Load prompt evaluation models"""
        try:
            # Load CLIP model (primary)
            logger.info("Loading CLIP model...")
            self.load_clip()
            
            # Load BLIP-2 model (secondary)
            logger.info("Loading BLIP-2 model...")
            self.load_blip2()
            
            # Load sentence transformer for text similarity
            logger.info("Loading sentence transformer...")
            self.load_sentence_transformer()
            
        except Exception as e:
            logger.error(f"Error loading prompt evaluation models: {str(e)}")
            self.use_fallback_implementation()
    
    def load_clip(self):
        """Load CLIP model"""
        try:
            model, preprocess = clip.load("ViT-B/32", device=self.device)
            self.models['clip'] = model
            self.processors['clip'] = preprocess
            logger.info("CLIP model loaded successfully")
        except Exception as e:
            logger.warning(f"Could not load CLIP: {str(e)}")
    
    def load_blip2(self):
        """Load BLIP-2 model"""
        try:
            processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
            model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
            model = model.to(self.device)
            
            self.models['blip2'] = model
            self.processors['blip2'] = processor
            logger.info("BLIP-2 model loaded successfully")
        except Exception as e:
            logger.warning(f"Could not load BLIP-2: {str(e)}")
    
    def load_sentence_transformer(self):
        """Load sentence transformer for text similarity"""
        try:
            model = SentenceTransformer('all-MiniLM-L6-v2')
            self.models['sentence_transformer'] = model
            logger.info("Sentence transformer loaded successfully")
        except Exception as e:
            logger.warning(f"Could not load sentence transformer: {str(e)}")
    
    def use_fallback_implementation(self):
        """Use simple fallback prompt evaluation"""
        logger.info("Using fallback prompt evaluation implementation")
        self.fallback_mode = True
    
    def evaluate_with_clip(self, image: Image.Image, prompt: str) -> float:
        """Evaluate prompt following using CLIP"""
        try:
            if 'clip' not in self.models:
                return self.fallback_prompt_score(image, prompt)
            
            model = self.models['clip']
            preprocess = self.processors['clip']
            
            # Preprocess image
            image_tensor = preprocess(image).unsqueeze(0).to(self.device)
            
            # Tokenize text
            text_tokens = clip.tokenize([prompt]).to(self.device)
            
            # Get features
            with torch.no_grad():
                image_features = model.encode_image(image_tensor)
                text_features = model.encode_text(text_tokens)
                
                # Normalize features
                image_features /= image_features.norm(dim=-1, keepdim=True)
                text_features /= text_features.norm(dim=-1, keepdim=True)
                
                # Calculate similarity
                similarity = (image_features @ text_features.T).item()
            
            # Convert similarity to 0-10 scale
            # CLIP similarity is typically between -1 and 1, but usually 0-1 for related content
            score = max(0.0, min(10.0, (similarity + 1) * 5))
            
            return score
            
        except Exception as e:
            logger.error(f"Error in CLIP evaluation: {str(e)}")
            return self.fallback_prompt_score(image, prompt)
    
    def evaluate_with_blip2(self, image: Image.Image, prompt: str) -> float:
        """Evaluate prompt following using BLIP-2"""
        try:
            if 'blip2' not in self.models:
                return self.fallback_prompt_score(image, prompt)
            
            model = self.models['blip2']
            processor = self.processors['blip2']
            
            # Generate caption for the image
            inputs = processor(image, return_tensors="pt").to(self.device)
            
            with torch.no_grad():
                out = model.generate(**inputs, max_length=50)
                generated_caption = processor.decode(out[0], skip_special_tokens=True)
            
            # Compare generated caption with original prompt using text similarity
            if 'sentence_transformer' in self.models:
                similarity_score = self.calculate_text_similarity(prompt, generated_caption)
            else:
                # Simple word overlap fallback
                similarity_score = self.simple_text_similarity(prompt, generated_caption)
            
            return similarity_score
            
        except Exception as e:
            logger.error(f"Error in BLIP-2 evaluation: {str(e)}")
            return self.fallback_prompt_score(image, prompt)
    
    def calculate_text_similarity(self, text1: str, text2: str) -> float:
        """Calculate semantic similarity between two texts"""
        try:
            model = self.models['sentence_transformer']
            
            # Encode texts
            embeddings = model.encode([text1, text2])
            
            # Calculate cosine similarity
            similarity = util.cos_sim(embeddings[0], embeddings[1]).item()
            
            # Convert to 0-10 scale
            score = max(0.0, min(10.0, (similarity + 1) * 5))
            
            return score
            
        except Exception as e:
            logger.error(f"Error calculating text similarity: {str(e)}")
            return self.simple_text_similarity(text1, text2)
    
    def simple_text_similarity(self, text1: str, text2: str) -> float:
        """Simple word overlap similarity"""
        try:
            # Convert to lowercase and split into words
            words1 = set(text1.lower().split())
            words2 = set(text2.lower().split())
            
            # Calculate Jaccard similarity
            intersection = len(words1.intersection(words2))
            union = len(words1.union(words2))
            
            if union == 0:
                return 0.0
            
            jaccard_similarity = intersection / union
            
            # Convert to 0-10 scale
            score = jaccard_similarity * 10
            
            return max(0.0, min(10.0, score))
            
        except Exception:
            return 5.0  # Default neutral score
    
    def extract_key_concepts(self, prompt: str) -> list:
        """Extract key concepts from prompt for detailed analysis"""
        try:
            # Simple keyword extraction
            # In production, this could use more sophisticated NLP
            
            # Remove common words
            stop_words = {'a', 'an', 'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'could', 'should'}
            
            words = prompt.lower().split()
            key_concepts = [word for word in words if word not in stop_words and len(word) > 2]
            
            return key_concepts
            
        except Exception:
            return []
    
    def evaluate_concept_presence(self, image: Image.Image, concepts: list) -> float:
        """Evaluate presence of specific concepts in image"""
        try:
            if 'clip' not in self.models or not concepts:
                return 5.0
            
            model = self.models['clip']
            preprocess = self.processors['clip']
            
            # Preprocess image
            image_tensor = preprocess(image).unsqueeze(0).to(self.device)
            
            # Create concept queries
            concept_queries = [f"a photo of {concept}" for concept in concepts]
            
            # Tokenize concepts
            text_tokens = clip.tokenize(concept_queries).to(self.device)
            
            # Get features
            with torch.no_grad():
                image_features = model.encode_image(image_tensor)
                text_features = model.encode_text(text_tokens)
                
                # Normalize features
                image_features /= image_features.norm(dim=-1, keepdim=True)
                text_features /= text_features.norm(dim=-1, keepdim=True)
                
                # Calculate similarities
                similarities = (image_features @ text_features.T).squeeze(0)
            
            # Average similarity across concepts
            avg_similarity = similarities.mean().item()
            
            # Convert to 0-10 scale
            score = max(0.0, min(10.0, (avg_similarity + 1) * 5))
            
            return score
            
        except Exception as e:
            logger.error(f"Error in concept presence evaluation: {str(e)}")
            return 5.0
    
    def fallback_prompt_score(self, image: Image.Image, prompt: str) -> float:
        """Simple fallback prompt evaluation"""
        try:
            # Very basic evaluation based on prompt length and image properties
            prompt_length = len(prompt.split())
            
            # Longer, more detailed prompts might be harder to follow perfectly
            if prompt_length < 5:
                length_penalty = 0.0
            elif prompt_length < 15:
                length_penalty = 0.5
            else:
                length_penalty = 1.0
            
            # Base score
            base_score = 7.0 - length_penalty
            
            return max(0.0, min(10.0, base_score))
            
        except Exception:
            return 5.0  # Default neutral score
    
    def evaluate(self, image: Image.Image, prompt: str) -> float:
        """
        Evaluate how well the image follows the given prompt
        
        Args:
            image: PIL Image to evaluate
            prompt: Text prompt to compare against
            
        Returns:
            Prompt following score from 0-10
        """
        try:
            if not prompt or not prompt.strip():
                return 0.0  # No prompt to evaluate against
            
            scores = []
            
            # CLIP evaluation (primary)
            clip_score = self.evaluate_with_clip(image, prompt)
            scores.append(clip_score)
            
            # BLIP-2 evaluation (secondary)
            blip2_score = self.evaluate_with_blip2(image, prompt)
            scores.append(blip2_score)
            
            # Concept presence evaluation
            key_concepts = self.extract_key_concepts(prompt)
            concept_score = self.evaluate_concept_presence(image, key_concepts)
            scores.append(concept_score)
            
            # Ensemble scoring
            weights = [0.5, 0.3, 0.2]  # CLIP gets highest weight
            final_score = sum(score * weight for score, weight in zip(scores, weights))
            
            logger.info(f"Prompt scores - CLIP: {clip_score:.2f}, BLIP-2: {blip2_score:.2f}, "
                       f"Concepts: {concept_score:.2f}, Final: {final_score:.2f}")
            
            return max(0.0, min(10.0, final_score))
            
        except Exception as e:
            logger.error(f"Error in prompt evaluation: {str(e)}")
            return self.fallback_prompt_score(image, prompt)