import os import gc from abc import ABC, abstractmethod from pathlib import Path from typing import List, Dict, Any, Type import cv2 import gradio as gr import numpy as np import pandas as pd import torch import onnxruntime as rt from PIL import Image from huggingface_hub import hf_hub_download from transformers import pipeline, Pipeline, AutoModel, AutoProcessor from tqdm import tqdm # Suppress a specific PIL warning about image size to handle large images Image.MAX_IMAGE_PIXELS = None # --- Configuration --- CACHE_DIR = "./hf_cache" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Use bfloat16 for modern GPUs, float32 for others (including CPU) DTYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float32 print(f"Using device: {DEVICE} with dtype: {DTYPE}") # ================================================================================== # 1. MODEL ABSTRACTION: A unified interface for all scorers. # ================================================================================== class AestheticScorer(ABC): """Abstract base class for all aesthetic scoring models.""" def __init__(self, model_name: str, repo_id: str, filename: str = None): self.model_name = model_name self.repo_id = repo_id self.filename = filename self._model = None print(f"Initializing scorer definition: {self.model_name}") @property def model(self): """Lazy-loads the model on first access.""" if self._model is None: print(f"Loading model weights for '{self.model_name}'...") self._model = self.load_model() print(f"'{self.model_name}' model weights loaded.") return self._model def _download_model(self) -> str: """Downloads the model file from Hugging Face Hub.""" return hf_hub_download(repo_id=self.repo_id, filename=self.filename, cache_dir=CACHE_DIR) @abstractmethod def load_model(self) -> Any: """Loads the model and any necessary preprocessors.""" pass @abstractmethod def score_batch(self, image_batch: List[Image.Image]) -> List[float]: """Scores a batch of images and returns a list of floats.""" pass def release_model(self): """Releases model from memory to conserve VRAM/RAM.""" if self._model is not None: print(f"Releasing model from memory: {self.model_name}") del self._model self._model = None gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() class PipelineScorer(AestheticScorer): """Scorer for models compatible with Hugging Face pipelines.""" def load_model(self) -> Pipeline: return pipeline("image-classification", model=self.repo_id, device=DEVICE) @torch.no_grad() def score_batch(self, image_batch: List[Image.Image]) -> List[float]: results = self.model(image_batch, top_k=None) # Get all class scores scores = [] for res in results: try: hq_score = next(item['score'] for item in res if item['label'] == 'hq') scores.append(round(hq_score * 10.0, 4)) except (StopIteration, TypeError): scores.append(0.0) return scores class ONNXScorer(AestheticScorer): """Scorer for ONNX-based models.""" def load_model(self) -> rt.InferenceSession: model_path = self._download_model() return rt.InferenceSession(model_path, providers=['CUDAExecutionProvider' if DEVICE == 'cuda' else 'CPUExecutionProvider']) def _preprocess(self, img: Image.Image) -> np.ndarray: img_np = np.array(img.convert("RGB")).astype(np.float32) / 255.0 s = 768 h, w = img_np.shape[:2] ratio = s / max(h, w) new_h, new_w = int(h * ratio), int(w * ratio) resized = cv2.resize(img_np, (new_w, new_h), interpolation=cv2.INTER_AREA) canvas = np.zeros((s, s, 3), dtype=np.float32) pad_h, pad_w = (s - new_h) // 2, (s - new_w) // 2 canvas[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = resized return np.transpose(canvas, (2, 0, 1))[np.newaxis, :] def score_batch(self, image_batch: List[Image.Image]) -> List[float]: scores = [] for img in image_batch: try: input_tensor = self._preprocess(img) pred = self.model.run(None, {"img": input_tensor})[0].item() scores.append(round(pred * 10.0, 4)) except Exception: scores.append(0.0) return scores class CLIPMLPScorer(AestheticScorer): """Scorer for models using a CLIP backbone and a custom MLP head.""" class MLP(torch.nn.Module): """Re-implementation of the exact MLP from the original code.""" def __init__(self, input_size: int): super().__init__() self.layers = torch.nn.Sequential( torch.nn.Linear(input_size, 2048), torch.nn.ReLU(), torch.nn.BatchNorm1d(2048), torch.nn.Dropout(0.3), torch.nn.Linear(2048, 512), torch.nn.ReLU(), torch.nn.BatchNorm1d(512), torch.nn.Dropout(0.3), torch.nn.Linear(512, 256), torch.nn.ReLU(), torch.nn.BatchNorm1d(256), torch.nn.Dropout(0.2), torch.nn.Linear(256, 128), torch.nn.ReLU(), torch.nn.BatchNorm1d(128), torch.nn.Dropout(0.1), torch.nn.Linear(128, 32), torch.nn.ReLU(), torch.nn.Linear(32, 1) ) def forward(self, x): return self.layers(x) def load_model(self) -> Dict[str, Any]: import clip model_path = self._download_model() mlp = self.MLP(input_size=768) # ViT-L/14 has 768 features state_dict = torch.load(model_path, map_location=DEVICE) mlp.load_state_dict(state_dict) mlp.to(device=DEVICE) mlp.eval() clip_model, preprocess = clip.load("ViT-L/14", device=DEVICE) return {"mlp": mlp, "clip": clip_model, "preprocess": preprocess} @torch.no_grad() def score_batch(self, image_batch: List[Image.Image]) -> List[float]: preprocess = self.model['preprocess'] # Handle single-image batches correctly for CLIP if len(image_batch) == 1: image_batch = image_batch * 2 single_image_mode = True else: single_image_mode = False image_tensors = torch.cat([preprocess(img).unsqueeze(0) for img in image_batch]).to(DEVICE) image_features = self.model['clip'].encode_image(image_tensors).to(torch.float32) image_features /= image_features.norm(dim=-1, keepdim=True) predictions = self.model['mlp'](image_features).squeeze(-1) scores = predictions.clamp(0, 10).float().cpu().numpy() final_scores = [round(float(s), 4) for s in scores] return final_scores[:1] if single_image_mode else final_scores class SigLIPScorer(AestheticScorer): """Scorer for the Aesthetic Predictor V2.5 SigLIP model.""" def load_model(self) -> Dict[str, Any]: model = AutoModel.from_pretrained(self.repo_id, trust_remote_code=True).to(DEVICE, DTYPE).eval() processor = AutoProcessor.from_pretrained(self.repo_id, trust_remote_code=True) return {"model": model, "processor": processor} @torch.no_grad() def score_batch(self, image_batch: List[Image.Image]) -> List[float]: inputs = self.model['processor']( images=[img.convert("RGB") for img in image_batch], return_tensors="pt" ) inputs = {k: v.to(DEVICE) for k, v in inputs.items()} inputs['pixel_values'] = inputs['pixel_values'].to(DTYPE) logits = self.model(**inputs).logits.squeeze(-1) scores = logits.float().cpu().numpy() return [round(float(s), 4) for s in scores] # --- Model Registry --- MODEL_REGISTRY: Dict[str, AestheticScorer] = { "Aesthetic Shadow V2": PipelineScorer("Aesthetic Shadow V2", "NeoChen1024/aesthetic-shadow-v2-backup"), "Waifu Scorer V3": CLIPMLPScorer("Waifu Scorer V3", "Eugeoter/waifu-scorer-v3", "model.pth"), "Aesthetic V2.5 SigLIP": SigLIPScorer("Aesthetic V2.5 SigLIP", "জিংוניत्र/Aesthetic-Predictor-V2-5-SigLIP"), "Anime Scorer": ONNXScorer("Anime Scorer", "skytnt/anime-aesthetic", "model.onnx") } _loaded_models_cache: Dict[str, AestheticScorer] = {} # ================================================================================== # 2. CORE PROCESSING LOGIC # ================================================================================== def get_scorers(model_names: List[str]) -> List[AestheticScorer]: """Retrieves and caches scorer instances based on selected names.""" for name in list(_loaded_models_cache.keys()): if name not in model_names: _loaded_models_cache[name].release_model() del _loaded_models_cache[name] return [_loaded_models_cache.setdefault(name, MODEL_REGISTRY[name]) for name in model_names] def evaluate_images( files: List[gr.File], selected_model_names: List[str], batch_size: int, progress=gr.Progress(track_tqdm=True) ) -> pd.DataFrame: """Main function to process images and return results as a Pandas DataFrame.""" if not files: gr.Warning("No images uploaded. Please upload files to evaluate.") return pd.DataFrame() if not selected_model_names: gr.Warning("No models selected. Please select at least one model.") return pd.DataFrame() try: image_paths = [Path(f.name) for f in files] all_results, scorers = [], get_scorers(selected_model_names) for i in tqdm(range(0, len(image_paths), batch_size), desc="Processing Batches"): batch_paths = image_paths[i : i + batch_size] try: batch_images = [Image.open(p).convert("RGB") for p in batch_paths] except Exception as e: gr.Warning(f"Skipping a batch due to an error loading an image: {e}") continue batch_scores = {scorer.model_name: scorer.score_batch(batch_images) for scorer in scorers} for j, path in enumerate(batch_paths): result_row = {"Image": str(path), "Filename": path.name} scores_for_avg = [batch_scores[s.model_name][j] for s in scorers] for scorer in scorers: result_row[scorer.model_name] = batch_scores[scorer.model_name][j] result_row["Average Score"] = round(np.mean(scores_for_avg), 4) if scores_for_avg else 0.0 all_results.append(result_row) return pd.DataFrame(all_results) if all_results else pd.DataFrame() except Exception as e: gr.Error(f"A critical error occurred: {e}") return pd.DataFrame() # ================================================================================== # 3. GRADIO USER INTERFACE # ================================================================================== def create_ui() -> gr.Blocks: """Creates and configures the Gradio web interface.""" all_model_names = list(MODEL_REGISTRY.keys()) dataframe_headers = ["Image", "Filename"] + all_model_names + ["Average Score"] dataframe_datatypes = ["image", "str"] + ["number"] * (len(all_model_names) + 1) with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue"), title="Image Aesthetic Scorer") as demo: gr.Markdown("# 🖼️ Modern Image Aesthetic Scorer") gr.Markdown("Upload images, select models, and click 'Evaluate'. Results table supports **interactive sorting** and **downloading as CSV**.") with gr.Row(): with gr.Column(scale=1): input_files = gr.Files(label="Upload Images", file_count="multiple", file_types=["image"]) model_checkboxes = gr.CheckboxGroup(choices=all_model_names, value=all_model_names, label="Scoring Models") batch_size_slider = gr.Slider(minimum=1, maximum=64, value=8, step=1, label="Batch Size", info="Adjust based on your VRAM.") with gr.Row(): process_button = gr.Button("🚀 Evaluate Images", variant="primary") clear_button = gr.Button("🧹 Clear All") with gr.Column(scale=3): # CORRECTED LINE: height and show_download_button are passed directly here. results_dataframe = gr.DataFrame( headers=dataframe_headers, datatype=dataframe_datatypes, label="Evaluation Scores", interactive=True, height=800, show_download_button=True ) process_button.click( fn=evaluate_images, inputs=[input_files, model_checkboxes, batch_size_slider], outputs=[results_dataframe] ) def clear_outputs(): for scorer in list(_loaded_models_cache.values()): scorer.release_model() _loaded_models_cache.clear() gr.Info("Cleared results and released models from memory.") return pd.DataFrame(), None # Clear dataframe and file input clear_button.click(fn=clear_outputs, outputs=[results_dataframe, input_files]) return demo # ================================================================================== # 4. APPLICATION ENTRY POINT # ================================================================================== if __name__ == "__main__": os.makedirs(CACHE_DIR, exist_ok=True) app = create_ui() app.queue().launch()