File size: 12,562 Bytes
14e747f
 
2642664
14e747f
2642664
 
14e747f
 
 
 
 
 
3e91ca9
14e747f
 
 
 
 
 
 
6c26275
14e747f
 
2642664
14e747f
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
14e747f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
 
 
 
 
14e747f
 
 
 
 
 
ba71a2e
a300ba0
 
 
14e747f
 
 
3e91ca9
 
 
 
 
 
14e747f
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
14e747f
 
 
 
983aac3
14e747f
 
983aac3
14e747f
 
 
2642664
 
 
 
14e747f
2642664
 
14e747f
 
 
 
 
2642664
14e747f
2642664
14e747f
 
2642664
14e747f
 
 
 
 
 
 
 
 
 
 
2642664
14e747f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
14e747f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
14e747f
2642664
14e747f
2642664
14e747f
2642664
14e747f
 
 
 
 
 
 
 
 
 
 
 
 
2642664
14e747f
 
 
 
 
 
 
 
 
 
 
2642664
14e747f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642664
14e747f
 
 
 
 
 
 
 
2642664
14e747f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import os
import cv2
import torch
import gradio as gr
import numpy as np
import pandas as pd
import onnxruntime as rt
import pytorch_lightning as pl
import torch.nn as nn
from transformers import pipeline
from PIL import Image
import inspect
import safetensors.torch

# =============================================================================
# Aesthetic-Shadow (using Hugging Face transformers pipeline)
# =============================================================================
# Initialize the pipeline; if CUDA is available, use GPU (device=0), else CPU (device=-1)
pipe_shadow = pipeline(
    "image-classification", 
    model="NeoChen1024/aesthetic-shadow-v2-backup", 
    device=0 if torch.cuda.is_available() else -1
)

def score_aesthetic_shadow(image: Image.Image) -> float:
    """Returns the 'hq' score from the aesthetic-shadow model."""
    result = pipe_shadow(image)
    # The result is a list (one per image) of predictions; find the one with label "hq"
    for pred in result[0]:
        if pred['label'] == 'hq':
            return round(pred['score'], 2)
    return 0.0

# =============================================================================
# Waifu-Scorer (including all necessary utility functions and model definition)
# =============================================================================
class MLP(pl.LightningModule):
    def __init__(self, input_size, batch_norm=True):
        super().__init__()
        self.layers = nn.Sequential(
            nn.Linear(input_size, 2048),
            nn.ReLU(),
            nn.BatchNorm1d(2048) if batch_norm else nn.Identity(),
            nn.Dropout(0.3),
            nn.Linear(2048, 512),
            nn.ReLU(),
            nn.BatchNorm1d(512) if batch_norm else nn.Identity(),
            nn.Dropout(0.3),
            nn.Linear(512, 256),
            nn.ReLU(),
            nn.BatchNorm1d(256) if batch_norm else nn.Identity(),
            nn.Dropout(0.2),
            nn.Linear(256, 128),
            nn.ReLU(),
            nn.BatchNorm1d(128) if batch_norm else nn.Identity(),
            nn.Dropout(0.1),
            nn.Linear(128, 32),
            nn.ReLU(),
            nn.Linear(32, 1)
        )

    def forward(self, x):
        return self.layers(x)

def normalized(a: torch.Tensor, order=2, dim=-1):
    l2 = a.norm(order, dim, keepdim=True)
    l2[l2 == 0] = 1
    return a / l2

def load_clip_models(name: str = "ViT-L/14", device='cuda'):
    import open_clip
    model2, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(name, device=device)
    preprocess = preprocess_val
    return model2, preprocess 

def load_model(model_path: str, input_size=768, device: str = 'cuda', dtype=None):
    model = MLP(input_size=input_size)
    if model_path.endswith(".safetensors"):
        state_dict = safetensors.torch.load_file(model_path, device=device)
    else:
        state = torch.load(model_path, map_location=device, weights_only=False)
        state_dict = state
    model.load_state_dict(state_dict)
    model.to(device)
    if dtype:
        model = model.to(dtype=dtype)
    return model

def encode_images(images, model2, preprocess, device='cuda'):
    if isinstance(images, Image.Image):
        images = [images]
    image_tensors = [preprocess(img).unsqueeze(0) for img in images]
    image_batch = torch.cat(image_tensors).to(device)
    image_features = model2.encode_image(image_batch)
    im_emb_arr = normalized(image_features).cpu().float()
    return im_emb_arr

class WaifuScorer:
    def __init__(self, model_path=None, device='cuda', cache_dir=None, verbose=False):
        self.verbose = verbose
        if model_path is None:
            # Use default repo path – if the model file is not present locally, it will be downloaded.
            model_path = "Eugeoter/waifu-scorer-v4-beta/model.safetensors"
        if not os.path.isfile(model_path):
            from huggingface_hub import hf_hub_download
            model_path = hf_hub_download("Eugeoter/waifu-scorer-v4-beta", "model.safetensors", cache_dir=cache_dir)
        print(f"Loading pretrained WaifuScorer model from {model_path}")
        self.mlp = load_model(model_path, input_size=768, device=device)
        self.model2, self.preprocess = load_clip_models("ViT-L/14", device=device)
        self.device = device
        self.mlp.eval()

    @torch.no_grad()
    def __call__(self, images):
        if isinstance(images, Image.Image):
            images = [images]
        n = len(images)
        if n == 1:
            images = images * 2  # duplicate single image for batch norm consistency
        images_encoded = encode_images(images, self.model2, self.preprocess, device=self.device).to(self.device, dtype=torch.float32)
        predictions = self.mlp(images_encoded)
        scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
        return scores[0] if len(scores) == 1 else scores

# Instantiate a global waifu scorer instance
waifu_scorer_instance = WaifuScorer(device='cuda' if torch.cuda.is_available() else 'cpu')

def score_waifu(image: Image.Image) -> float:
    """Scores an image using the WaifuScorer model (range 0-10)."""
    score = waifu_scorer_instance(image)
    if isinstance(score, list):
        return round(score[0], 2)
    return round(score, 2)

# =============================================================================
# Aesthetic Predictor V2.5
# =============================================================================
class AestheticPredictor:
    def __init__(self):
        from aesthetic_predictor_v2_5 import convert_v2_5_from_siglip
        # Load model and preprocessor
        self.model, self.preprocessor = convert_v2_5_from_siglip(
            low_cpu_mem_usage=True,
            trust_remote_code=True,
        )
        if torch.cuda.is_available():
            self.model = self.model.to(torch.bfloat16).cuda()

    def inference(self, image: Image.Image) -> float:
        # Preprocess image
        pixel_values = self.preprocessor(images=image.convert("RGB"), return_tensors="pt").pixel_values
        if torch.cuda.is_available():
            pixel_values = pixel_values.to(torch.bfloat16).cuda()
        with torch.inference_mode():
            score = self.model(pixel_values).logits.squeeze().float().cpu().numpy()
        return score

# Instantiate a global aesthetic predictor
aesthetic_predictor_instance = AestheticPredictor()

def score_aesthetic_predictor(image: Image.Image) -> float:
    """Returns the aesthetic score from aesthetic-predictor-v2-5 (usually between 1 and 10)."""
    score = aesthetic_predictor_instance.inference(image)
    return round(float(score), 2)

# =============================================================================
# Cafe Aesthetic / Style / Waifu scoring using separate pipelines
# =============================================================================
pipe_cafe_aesthetic = pipeline(
    "image-classification", 
    "cafeai/cafe_aesthetic", 
    device=0 if torch.cuda.is_available() else -1
)
pipe_cafe_style = pipeline(
    "image-classification", 
    "cafeai/cafe_style", 
    device=0 if torch.cuda.is_available() else -1
)
pipe_cafe_waifu = pipeline(
    "image-classification", 
    "cafeai/cafe_waifu", 
    device=0 if torch.cuda.is_available() else -1
)

def score_cafe(image: Image.Image):
    """Returns a tuple of (cafe aesthetic, cafe style, cafe waifu) scores/dicts."""
    result_aesthetic = pipe_cafe_aesthetic(image, top_k=2)
    score_aesthetic = {d["label"]: d["score"] for d in result_aesthetic}
    result_style = pipe_cafe_style(image, top_k=5)
    score_style = {d["label"]: d["score"] for d in result_style}
    result_waifu = pipe_cafe_waifu(image, top_k=5)
    score_waifu_dict = {d["label"]: d["score"] for d in result_waifu}
    # For convenience, we take the top aesthetic score
    top_aesthetic = list(score_aesthetic.values())[0] if score_aesthetic else None
    return top_aesthetic, score_style, score_waifu_dict

# =============================================================================
# Anime Aesthetic Predict using ONNX Runtime
# =============================================================================
# Download the model (only once)
model_path_anime = None
try:
    from huggingface_hub import hf_hub_download
    model_path_anime = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
except Exception as e:
    print("Error downloading anime aesthetic model:", e)
if model_path_anime:
    model_anime = rt.InferenceSession(model_path_anime, providers=['CPUExecutionProvider'])
else:
    model_anime = None

def score_anime_aesthetic(image: Image.Image) -> float:
    """Returns the aesthetic score from the anime-aesthetic model."""
    img = np.array(image)
    img = img.astype(np.float32) / 255.0
    s = 768
    h, w = img.shape[:2]
    if h > w:
        new_h, new_w = s, int(s * w / h)
    else:
        new_h, new_w = int(s * h / w), s
    resized = cv2.resize(img, (new_w, new_h))
    ph, pw = s - new_h, s - new_w
    img_input = np.zeros((s, s, 3), dtype=np.float32)
    img_input[ph//2:ph//2+new_h, pw//2:pw//2+new_w] = resized
    img_input = np.transpose(img_input, (2, 0, 1))
    img_input = img_input[np.newaxis, :]
    if model_anime:
        pred = model_anime.run(None, {"img": img_input})[0].item()
        return round(pred, 2)
    else:
        return 0.0

# =============================================================================
# Main Evaluation Function: Process a list of images and return a results table and gallery preview
# =============================================================================
def evaluate_images(images):
    """
    For each uploaded image, compute scores from multiple models.
    Returns:
      - A Pandas DataFrame with rows for each image and columns for each score.
      - A list of images (previews) for display.
    """
    results = []
    previews = []
    for idx, img in enumerate(images):
        filename = f"Image {idx+1}"
        try:
            score_shadow = score_aesthetic_shadow(img)
        except Exception as e:
            score_shadow = None
        try:
            score_waifu_val = score_waifu(img)
        except Exception as e:
            score_waifu_val = None
        try:
            score_ap = score_aesthetic_predictor(img)
        except Exception as e:
            score_ap = None
        try:
            cafe_aesthetic, _, _ = score_cafe(img)
        except Exception as e:
            cafe_aesthetic = None
        try:
            score_anime = score_anime_aesthetic(img)
        except Exception as e:
            score_anime = None

        results.append({
            "Filename": filename,
            "Aesthetic Shadow": score_shadow,
            "Waifu Scorer": score_waifu_val,
            "Aesthetic Predictor": score_ap,
            "Cafe Aesthetic": cafe_aesthetic,
            "Anime Aesthetic": score_anime
        })
        previews.append(img)
    df = pd.DataFrame(results)
    return df, previews

# =============================================================================
# Gradio Interface
# =============================================================================
with gr.Blocks(title="Ultimate Image Aesthetic Evaluator") as demo:
    gr.Markdown(
        """
        # Ultimate Image Aesthetic Evaluator
        Upload multiple images to evaluate their aesthetic scores using various models.
        The table below shows the scores from:
        - **Aesthetic Shadow**
        - **Waifu Scorer**
        - **Aesthetic Predictor V2.5**
        - **Cafe Aesthetic**
        - **Anime Aesthetic**
        """
    )
    with gr.Row():
        with gr.Column():
            input_images = gr.Image(
                label="Upload Images", 
                type="pil", 
                tool="editor", 
                source="upload", 
                image_mode="RGB", 
                interactive=True, 
                multiple=True
            )
            evaluate_button = gr.Button("Evaluate Images")
        with gr.Column():
            output_table = gr.Dataframe(
                headers=["Filename", "Aesthetic Shadow", "Waifu Scorer", "Aesthetic Predictor", "Cafe Aesthetic", "Anime Aesthetic"],
                label="Evaluation Results"
            )
            output_gallery = gr.Gallery(label="Image Previews").style(grid=[2], height="auto")
    evaluate_button.click(fn=evaluate_images, inputs=input_images, outputs=[output_table, output_gallery])

demo.queue().launch()