File size: 29,720 Bytes
027d32e 57728d7 d924e11 027d32e d924e11 57728d7 027d32e d924e11 027d32e d924e11 027d32e 14e747f 57728d7 8ffbf61 027d32e 2642664 027d32e d924e11 027d32e 2642664 d924e11 027d32e d924e11 027d32e 8ffbf61 027d32e 8ffbf61 027d32e 8ffbf61 027d32e 8ffbf61 027d32e 8ffbf61 027d32e d924e11 dcbe972 027d32e d924e11 027d32e dcbe972 027d32e d924e11 027d32e dcbe972 027d32e dcbe972 027d32e dcbe972 027d32e dcbe972 027d32e dcbe972 027d32e d924e11 027d32e d924e11 027d32e d924e11 027d32e d924e11 027d32e dcbe972 027d32e dcbe972 027d32e dcbe972 027d32e d924e11 027d32e 8ffbf61 027d32e 8ffbf61 027d32e 8ffbf61 027d32e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 |
"""
Modern Image Evaluation Tool with Aesthetic and Quality Prediction Models
This refactored version features:
- Modern async/await patterns with proper error handling
- Type hints throughout for better code maintainability
- Dependency injection and factory patterns
- Proper resource management with context managers
- Configuration-driven model loading
- Improved batch processing with memory optimization
- Clean separation of concerns with proper abstraction layers
"""
import asyncio
import base64
import csv
import logging
import os
import tempfile
import shutil
from contextlib import asynccontextmanager
from dataclasses import dataclass, field
from enum import Enum
from io import BytesIO, StringIO
from pathlib import Path
from typing import Dict, List, Optional, Protocol, Tuple, Union, Any
from abc import ABC, abstractmethod
import cv2
import gradio as gr
import numpy as np
import onnxruntime as ort
import torch
import torch.nn as nn
from PIL import Image
from transformers import pipeline
from huggingface_hub import hf_hub_download
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# =============================================================================
# Configuration and Data Models
# =============================================================================
class ModelType(Enum):
"""Enumeration of available model types."""
AESTHETIC_SHADOW = "aesthetic_shadow"
WAIFU_SCORER = "waifu_scorer"
AESTHETIC_PREDICTOR_V2_5 = "aesthetic_predictor_v2_5"
ANIME_AESTHETIC = "anime_aesthetic"
@dataclass
class ModelConfig:
"""Configuration for individual models."""
name: str
display_name: str
enabled: bool = True
batch_supported: bool = True
model_path: Optional[str] = None
cache_dir: Optional[str] = None
@dataclass
class ProcessingConfig:
"""Configuration for processing parameters."""
auto_batch: bool = False
manual_batch_size: int = 1
max_batch_size: int = 64
device: str = "cuda" if torch.cuda.is_available() else "cpu"
score_range: Tuple[float, float] = (0.0, 10.0)
@dataclass
class EvaluationResult:
"""Data class for individual evaluation results."""
file_name: str
file_path: str
thumbnail_b64: str
model_scores: Dict[str, Optional[float]] = field(default_factory=dict)
final_score: Optional[float] = None
processing_time: float = 0.0
error: Optional[str] = None
@dataclass
class BatchResult:
"""Data class for batch processing results."""
results: List[EvaluationResult]
logs: List[str]
processing_time: float
batch_size_used: int
success_count: int
error_count: int
# =============================================================================
# Model Interfaces and Implementations
# =============================================================================
class BaseModel(Protocol):
"""Protocol defining the interface for all evaluation models."""
async def predict(self, images: List[Image.Image]) -> List[Optional[float]]:
"""Predict scores for a batch of images."""
...
def is_available(self) -> bool:
"""Check if the model is available and ready for inference."""
...
def cleanup(self) -> None:
"""Clean up model resources."""
...
class ModernMLP(nn.Module):
"""Modern implementation of MLP with improved architecture."""
def __init__(
self,
input_size: int,
hidden_dims: List[int] = None,
dropout_rates: List[float] = None,
use_batch_norm: bool = True,
activation: nn.Module = nn.ReLU
):
super().__init__()
if hidden_dims is None:
hidden_dims = [2048, 512, 256, 128, 32]
if dropout_rates is None:
dropout_rates = [0.3, 0.3, 0.2, 0.1, 0.0]
layers = []
prev_dim = input_size
for i, (hidden_dim, dropout_rate) in enumerate(zip(hidden_dims, dropout_rates)):
layers.append(nn.Linear(prev_dim, hidden_dim))
layers.append(activation())
if use_batch_norm and i < len(hidden_dims) - 1:
layers.append(nn.BatchNorm1d(hidden_dim))
if dropout_rate > 0:
layers.append(nn.Dropout(dropout_rate))
prev_dim = hidden_dim
# Final output layer
layers.append(nn.Linear(prev_dim, 1))
self.network = nn.Sequential(*layers)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.network(x)
class WaifuScorerModel:
"""Modernized WaifuScorer implementation with better error handling."""
def __init__(self, config: ModelConfig, device: str):
self.config = config
self.device = device
self.dtype = torch.float32
self._available = False
self._model = None
self._clip_model = None
self._preprocess = None
self._initialize_model()
def _initialize_model(self) -> None:
"""Initialize the model with proper error handling."""
try:
import clip
# Download model if needed
model_path = self._get_model_path()
# Initialize MLP
self._model = ModernMLP(input_size=768)
# Load weights
if model_path.endswith(".safetensors"):
from safetensors.torch import load_file
state_dict = load_file(model_path)
else:
state_dict = torch.load(model_path, map_location=self.device)
self._model.load_state_dict(state_dict)
self._model.to(self.device)
self._model.eval()
# Load CLIP model
self._clip_model, self._preprocess = clip.load("ViT-L/14", device=self.device)
self._available = True
logger.info(f"WaifuScorer model loaded successfully on {self.device}")
except Exception as e:
logger.error(f"Failed to initialize WaifuScorer: {e}")
self._available = False
def _get_model_path(self) -> str:
"""Get or download the model path."""
if self.config.model_path and os.path.isfile(self.config.model_path):
return self.config.model_path
# Default download path
model_path = "Eugeoter/waifu-scorer-v3/model.pth"
username, repo_id, model_name = model_path.split("/")[-3:]
return hf_hub_download(f"{username}/{repo_id}", model_name, cache_dir=self.config.cache_dir)
async def predict(self, images: List[Image.Image]) -> List[Optional[float]]:
"""Predict scores for a batch of images."""
if not self._available:
return [None] * len(images)
try:
# Handle single image case for CLIP compatibility
batch_images = images * 2 if len(images) == 1 else images
# Preprocess images
image_tensors = [self._preprocess(img).unsqueeze(0) for img in batch_images]
image_batch = torch.cat(image_tensors).to(self.device)
# Extract features and predict
with torch.no_grad():
image_features = self._clip_model.encode_image(image_batch)
# Normalize features
norm = image_features.norm(2, dim=-1, keepdim=True)
norm[norm == 0] = 1
normalized_features = (image_features / norm).to(device=self.device, dtype=self.dtype)
predictions = self._model(normalized_features)
scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
return scores[:len(images)]
except Exception as e:
logger.error(f"Error in WaifuScorer prediction: {e}")
return [None] * len(images)
def is_available(self) -> bool:
return self._available
def cleanup(self) -> None:
"""Clean up model resources."""
if self._model is not None:
del self._model
if self._clip_model is not None:
del self._clip_model
torch.cuda.empty_cache() if torch.cuda.is_available() else None
class AestheticShadowModel:
"""Wrapper for Aesthetic Shadow model using transformers pipeline."""
def __init__(self, config: ModelConfig, device: str):
self.config = config
self.device = device
self._available = False
self._model = None
self._initialize_model()
def _initialize_model(self) -> None:
"""Initialize the model pipeline."""
try:
self._model = pipeline(
"image-classification",
model="NeoChen1024/aesthetic-shadow-v2-backup",
device=self.device
)
self._available = True
logger.info("Aesthetic Shadow model loaded successfully")
except Exception as e:
logger.error(f"Failed to initialize Aesthetic Shadow: {e}")
self._available = False
async def predict(self, images: List[Image.Image]) -> List[Optional[float]]:
"""Predict scores for a batch of images."""
if not self._available:
return [None] * len(images)
try:
results = self._model(images)
scores = []
for result in results:
try:
hq_score = next(p for p in result if p['label'] == 'hq')['score']
score = float(np.clip(hq_score * 10.0, 0.0, 10.0))
scores.append(score)
except (StopIteration, KeyError, TypeError):
scores.append(None)
return scores
except Exception as e:
logger.error(f"Error in Aesthetic Shadow prediction: {e}")
return [None] * len(images)
def is_available(self) -> bool:
return self._available
def cleanup(self) -> None:
if self._model is not None:
del self._model
class AestheticPredictorV25Model:
"""Wrapper for Aesthetic Predictor V2.5 model."""
def __init__(self, config: ModelConfig, device: str):
self.config = config
self.device = device
self._available = False
self._model = None
self._preprocessor = None
self._initialize_model()
def _initialize_model(self) -> None:
"""Initialize the model."""
try:
from aesthetic_predictor_v2_5 import convert_v2_5_from_siglip
self._model, self._preprocessor = convert_v2_5_from_siglip(
low_cpu_mem_usage=True,
trust_remote_code=True,
)
if torch.cuda.is_available():
self._model = self._model.to(torch.bfloat16).cuda()
self._available = True
logger.info("Aesthetic Predictor V2.5 loaded successfully")
except Exception as e:
logger.error(f"Failed to initialize Aesthetic Predictor V2.5: {e}")
self._available = False
async def predict(self, images: List[Image.Image]) -> List[Optional[float]]:
"""Predict scores for a batch of images."""
if not self._available:
return [None] * len(images)
try:
rgb_images = [img.convert("RGB") for img in images]
pixel_values = self._preprocessor(images=rgb_images, return_tensors="pt").pixel_values
if torch.cuda.is_available():
pixel_values = pixel_values.to(torch.bfloat16).cuda()
with torch.inference_mode():
scores = self._model(pixel_values).logits.squeeze().float().cpu().numpy()
if scores.ndim == 0:
scores = np.array([scores])
return [float(np.round(np.clip(s, 0.0, 10.0), 4)) for s in scores]
except Exception as e:
logger.error(f"Error in Aesthetic Predictor V2.5 prediction: {e}")
return [None] * len(images)
def is_available(self) -> bool:
return self._available
def cleanup(self) -> None:
if self._model is not None:
del self._model
class AnimeAestheticModel:
"""ONNX-based Anime Aesthetic model."""
def __init__(self, config: ModelConfig, device: str):
self.config = config
self.device = device
self._available = False
self._session = None
self._initialize_model()
def _initialize_model(self) -> None:
"""Initialize the ONNX model."""
try:
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
self._session = ort.InferenceSession(model_path, providers=['CPUExecutionProvider'])
self._available = True
logger.info("Anime Aesthetic model loaded successfully")
except Exception as e:
logger.error(f"Failed to initialize Anime Aesthetic: {e}")
self._available = False
async def predict(self, images: List[Image.Image]) -> List[Optional[float]]:
"""Predict scores for images (single image processing for ONNX)."""
if not self._available:
return [None] * len(images)
scores = []
for img in images:
try:
score = self._predict_single(img)
scores.append(float(np.clip(score * 10.0, 0.0, 10.0)))
except Exception as e:
logger.error(f"Error predicting anime aesthetic for image: {e}")
scores.append(None)
return scores
def _predict_single(self, img: Image.Image) -> float:
"""Predict score for a single image."""
img_np = np.array(img).astype(np.float32) / 255.0
s = 768
h, w = img_np.shape[:2]
# Resize while maintaining aspect ratio
if h > w:
new_h, new_w = s, int(s * w / h)
else:
new_h, new_w = int(s * h / w), s
resized = cv2.resize(img_np, (new_w, new_h))
# Center crop/pad to square
canvas = np.zeros((s, s, 3), dtype=np.float32)
pad_h = (s - new_h) // 2
pad_w = (s - new_w) // 2
canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized
# Prepare input
input_tensor = np.transpose(canvas, (2, 0, 1))[np.newaxis, :]
return self._session.run(None, {"img": input_tensor})[0].item()
def is_available(self) -> bool:
return self._available
def cleanup(self) -> None:
if self._session is not None:
del self._session
# =============================================================================
# Model Factory and Manager
# =============================================================================
class ModelFactory:
"""Factory for creating model instances."""
_MODEL_CLASSES = {
ModelType.AESTHETIC_SHADOW: AestheticShadowModel,
ModelType.WAIFU_SCORER: WaifuScorerModel,
ModelType.AESTHETIC_PREDICTOR_V2_5: AestheticPredictorV25Model,
ModelType.ANIME_AESTHETIC: AnimeAestheticModel,
}
@classmethod
def create_model(cls, model_type: ModelType, config: ModelConfig, device: str) -> BaseModel:
"""Create a model instance based on type."""
model_class = cls._MODEL_CLASSES.get(model_type)
if not model_class:
raise ValueError(f"Unknown model type: {model_type}")
return model_class(config, device)
class ModelManager:
"""Advanced model manager with async processing and resource management."""
def __init__(self, processing_config: ProcessingConfig):
self.config = processing_config
self.models: Dict[ModelType, BaseModel] = {}
self.model_configs = self._create_default_configs()
self._processing_queue = asyncio.Queue()
self._worker_task: Optional[asyncio.Task] = None
self._temp_dir = Path(tempfile.mkdtemp())
self._initialize_models()
def _create_default_configs(self) -> Dict[ModelType, ModelConfig]:
"""Create default model configurations."""
return {
ModelType.AESTHETIC_SHADOW: ModelConfig(
name="aesthetic_shadow",
display_name="Aesthetic Shadow"
),
ModelType.WAIFU_SCORER: ModelConfig(
name="waifu_scorer",
display_name="Waifu Scorer"
),
ModelType.AESTHETIC_PREDICTOR_V2_5: ModelConfig(
name="aesthetic_predictor_v2_5",
display_name="Aesthetic V2.5"
),
ModelType.ANIME_AESTHETIC: ModelConfig(
name="anime_aesthetic",
display_name="Anime Score",
batch_supported=False
),
}
def _initialize_models(self) -> None:
"""Initialize all models."""
logger.info("Initializing models...")
for model_type, config in self.model_configs.items():
if config.enabled:
try:
model = ModelFactory.create_model(model_type, config, self.config.device)
if model.is_available():
self.models[model_type] = model
logger.info(f"β {config.display_name} loaded successfully")
else:
logger.warning(f"β {config.display_name} failed to load")
except Exception as e:
logger.error(f"β {config.display_name} initialization error: {e}")
logger.info(f"Initialized {len(self.models)} models successfully")
async def start_worker(self) -> None:
"""Start the background processing worker."""
if self._worker_task is None:
self._worker_task = asyncio.create_task(self._worker_loop())
logger.info("Background worker started")
async def _worker_loop(self) -> None:
"""Main worker loop for processing requests."""
while True:
request = await self._processing_queue.get()
if request is None: # Shutdown signal
break
try:
result = await self._process_request(request)
request['future'].set_result(result)
except Exception as e:
request['future'].set_exception(e)
finally:
self._processing_queue.task_done()
async def process_images(
self,
file_paths: List[str],
selected_models: List[ModelType],
auto_batch: bool = False,
manual_batch_size: int = 1
) -> BatchResult:
"""Process images with selected models."""
future = asyncio.Future()
request = {
'file_paths': file_paths,
'selected_models': selected_models,
'auto_batch': auto_batch,
'manual_batch_size': manual_batch_size,
'future': future
}
await self._processing_queue.put(request)
return await future
async def _process_request(self, request: Dict) -> BatchResult:
"""Process a single batch request."""
start_time = asyncio.get_event_loop().time()
logs = []
results = []
file_paths = request['file_paths']
selected_models = request['selected_models']
auto_batch = request['auto_batch']
manual_batch_size = request['manual_batch_size']
# Load images
images, valid_paths = await self._load_images(file_paths, logs)
if not images:
return BatchResult([], logs, 0.0, 0, 0, len(file_paths))
# Determine batch size
batch_size = await self._determine_batch_size(images, auto_batch, manual_batch_size, logs)
# Process in batches
for i in range(0, len(images), batch_size):
batch_images = images[i:i+batch_size]
batch_paths = valid_paths[i:i+batch_size]
batch_results = await self._process_batch(batch_images, batch_paths, selected_models, logs)
results.extend(batch_results)
processing_time = asyncio.get_event_loop().time() - start_time
success_count = sum(1 for r in results if r.error is None)
error_count = len(results) - success_count
return BatchResult(
results=results,
logs=logs,
processing_time=processing_time,
batch_size_used=batch_size,
success_count=success_count,
error_count=error_count
)
async def _load_images(self, file_paths: List[str], logs: List[str]) -> Tuple[List[Image.Image], List[str]]:
"""Load and validate images."""
images = []
valid_paths = []
logs.append(f"Loading {len(file_paths)} images...")
for path in file_paths:
try:
img = Image.open(path).convert("RGB")
images.append(img)
valid_paths.append(path)
except Exception as e:
logs.append(f"Failed to load {path}: {e}")
logs.append(f"Successfully loaded {len(images)} images")
return images, valid_paths
async def _determine_batch_size(
self,
images: List[Image.Image],
auto_batch: bool,
manual_batch_size: int,
logs: List[str]
) -> int:
"""Determine optimal batch size."""
if not auto_batch:
return min(manual_batch_size, len(images))
# Auto-tune batch size
batch_size = 1
test_image = images[0:1]
while batch_size <= min(len(images), self.config.max_batch_size):
try:
# Test with a sample of available models
test_batch = test_image * batch_size
for model_type, model in list(self.models.items())[:2]: # Test with first 2 models
await model.predict(test_batch)
batch_size *= 2
except Exception:
break
optimal_batch = max(1, batch_size // 2)
logs.append(f"Auto-tuned batch size: {optimal_batch}")
return optimal_batch
async def _process_batch(
self,
images: List[Image.Image],
paths: List[str],
selected_models: List[ModelType],
logs: List[str]
) -> List[EvaluationResult]:
"""Process a single batch of images."""
batch_results = []
# Get predictions from all models
model_predictions = {}
for model_type in selected_models:
if model_type in self.models:
try:
predictions = await self.models[model_type].predict(images)
model_predictions[model_type.value] = predictions
logs.append(f"β {self.model_configs[model_type].display_name} processed batch")
except Exception as e:
logs.append(f"β {self.model_configs[model_type].display_name} error: {e}")
model_predictions[model_type.value] = [None] * len(images)
# Create results
for i, (image, path) in enumerate(zip(images, paths)):
# Collect scores for this image
scores = {}
valid_scores = []
for model_type in selected_models:
score = model_predictions.get(model_type.value, [None] * len(images))[i]
scores[model_type.value] = score
if score is not None:
valid_scores.append(score)
# Calculate final score
final_score = np.mean(valid_scores) if valid_scores else None
if final_score is not None:
final_score = float(np.clip(final_score, *self.config.score_range))
# Create thumbnail
thumbnail = image.copy()
thumbnail.thumbnail((200, 200), Image.Resampling.LANCZOS)
thumbnail_b64 = self._image_to_base64(thumbnail)
result = EvaluationResult(
file_name=Path(path).name,
file_path=path,
thumbnail_b64=thumbnail_b64,
model_scores=scores,
final_score=final_score
)
batch_results.append(result)
return batch_results
def _image_to_base64(self, image: Image.Image) -> str:
"""Convert PIL Image to base64 string."""
buffer = BytesIO()
image.save(buffer, format="JPEG", quality=85, optimize=True)
return base64.b64encode(buffer.getvalue()).decode('utf-8')
def get_available_models(self) -> Dict[ModelType, str]:
"""Get available models with their display names."""
return {
model_type: self.model_configs[model_type].display_name
for model_type in self.models.keys()
}
async def cleanup(self) -> None:
"""Clean up resources."""
# Shutdown worker
if self._worker_task:
await self._processing_queue.put(None)
await self._worker_task
# Clean up models
for model in self.models.values():
model.cleanup()
# Clean up temp directory
if self._temp_dir.exists():
shutil.rmtree(self._temp_dir)
logger.info("Model manager cleanup completed")
# =============================================================================
# Results Processing and Export
# =============================================================================
class ResultsProcessor:
"""Handle result processing, sorting, and export functionality."""
@staticmethod
def sort_results(results: List[EvaluationResult], sort_by: str, reverse: bool = True) -> List[EvaluationResult]:
"""Sort results by specified criteria."""
sort_key_map = {
"Final Score": lambda r: r.final_score if r.final_score is not None else -float('inf'),
"File Name": lambda r: r.file_name.lower(),
**{f"model_{model_type.value}": lambda r, mt=model_type.value: r.model_scores.get(mt) or -float('inf')
for model_type in ModelType}
}
sort_key = sort_key_map.get(sort_by, sort_key_map["Final Score"])
return sorted(results, key=sort_key, reverse=reverse and sort_by != "File Name")
@staticmethod
def generate_html_table(results: List[EvaluationResult], selected_models: List[ModelType]) -> str:
"""Generate HTML table for results display."""
if not results:
return "<p>No results to display</p>"
# CSS styles
styles = """
<style>
.results-table {
width: 100%; border-collapse: collapse; margin: 20px 0;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.results-table th, .results-table td {
border: 1px solid #ddd; padding: 12px; text-align: center;
}
.results-table th {
background-color: #f8f9fa; font-weight: 600; color: #495057;
}
.results-table tr:nth-child(even) { background-color: #f8f9fa; }
.results-table tr:hover { background-color: #e9ecef; }
.image-preview {
max-width: 120px; max-height: 120px; border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.score-excellent { color: #28a745; font-weight: bold; }
.score-good { color: #ffc107; font-weight: bold; }
.score-poor { color: #dc3545; font-weight: bold; }
.score-na { color: #6c757d; font-style: italic; }
</style>
"""
# Table header
html = styles + '<table class="results-table"><thead><tr>'
html += '<th>Image</th><th>File Name</th>'
for model_type in selected_models:
model_name = ModelType(model_type).name.replace('_', ' ').title()
html += f'<th>{model_name}</th>'
html += '<th>Final Score</th></tr></thead><tbody>'
# Table rows
for result in results:
html += '<tr>'
html += f'<td><img src="data:image/jpeg;base64,{result.thumbnail_b64}" class="image-preview" alt="{result.file_name}"></td>'
html += f'<td>{result.file_name}</td>'
# Model scores
for model_type in selected_models:
score = result.model_scores.get(model_type.value)
html += ResultsProcessor._format_score_cell(score)
# Final score
html += ResultsProcessor._format_score_cell(result.final_score)
html += '</tr>'
html += '</tbody></table>'
return html |