import os import torch import gradio as gr from openvoice import se_extractor from openvoice.api import ToneColorConverter from transformers import pipeline import scipy from pathlib import Path # Output directory setup output_dir = './openvoice_outputs' os.makedirs(output_dir, exist_ok=True) # Function to get model names from a directory def get_model_names(model_dir): model_paths = Path(model_dir).glob('*') return [model_path.name for model_path in model_paths if model_path.is_dir()] def generate_speech(text, model_path): synthesiser = pipeline("text-to-speech", model_path, device=0 if torch.cuda.is_available() else -1) speech = synthesiser(text) # Resample to 48kHz if needed if speech["sampling_rate"] != 48000: resampled_audio = scipy.signal.resample(speech["audio"][0], int(len(speech["audio"][0]) * 48000 / speech["sampling_rate"])) sampling_rate = 48000 else: resampled_audio = speech["audio"][0] sampling_rate = speech["sampling_rate"] return sampling_rate, resampled_audio def save_audio(sampling_rate, audio_data, filename="output.wav"): scipy.io.wavfile.write(filename, rate=sampling_rate, data=audio_data) return filename def voice_cloning(base_speaker, reference_speaker, model_version, device_choice, vad_select): try: # Determine paths and device ckpt_converter = f'./OPENVOICE_MODELS/{model_version}' device = "cuda:0" if device_choice == "GPU" and torch.cuda.is_available() else "cpu" print(f"Device: {device}") # Load the ToneColorConverter tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device) tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth') # Extract speaker embeddings source_se, _ = se_extractor.get_se(base_speaker, tone_color_converter, vad=vad_select) target_se, _ = se_extractor.get_se(reference_speaker, tone_color_converter, vad=vad_select) # Define output file paths save_path = f'{output_dir}/output_cloned.wav' # Perform tone color conversion tone_color_converter.convert( audio_src_path=base_speaker, src_se=source_se, tgt_se=target_se, output_path=save_path, ) return save_path, "Voice cloning successful!" except Exception as e: return None, f"Error: {str(e)}" def ui_fn(text, model_dir, model_name, clone, reference_speaker, model_version, device_choice, vad_select): model_path = os.path.join(model_dir, model_name) sampling_rate, audio_data = generate_speech(text, model_path) audio_file = save_audio(sampling_rate, audio_data) if clone: cloned_audio_file, status = voice_cloning(audio_file, reference_speaker, model_version, device_choice, vad_select) return cloned_audio_file, status else: return audio_file, "Speech generation successful!" if __name__ == "__main__": #model_dir = "./models_mms" #model_names = get_model_names(model_dir) iface = gr.Interface( fn=ui_fn, inputs=[ gr.Textbox(label="Text to Synthesize"), gr.Textbox(label="Model Path or Id", value="VIZINTZOR/MMS-TTS-THAI-MALE-NARRATOR"), #gr.Dropdown(model_names, label="Model"), gr.Checkbox(label="Clone Voice", value=False), gr.Audio(label="Reference Speaker (Target Voice)", type="filepath"), gr.Dropdown(["v1", "v2"], value="v2", label="Model Version"), gr.Dropdown(["CPU", "GPU"], value="GPU" if torch.cuda.is_available() else "CPU", label="Device"), gr.Checkbox(value=False, label="VAD", interactive=True) ], outputs=[ gr.Audio(label="Generated Audio", type="filepath"), gr.Textbox(label="Status", interactive=False) ], title="Text-to-Speech Synthesizer with Voice Cloning", description="Enter text and model path to generate speech. Optionally, clone the voice using a reference speaker." ) iface.launch()