Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,15 +11,10 @@ from pathlib import Path
|
|
| 11 |
output_dir = './openvoice_outputs'
|
| 12 |
os.makedirs(output_dir, exist_ok=True)
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
model_paths = Path(model_dir).glob('*')
|
| 17 |
-
return [model_path.name for model_path in model_paths if model_path.is_dir()]
|
| 18 |
-
|
| 19 |
-
def generate_speech(text, model_path):
|
| 20 |
-
synthesiser = pipeline("text-to-speech", model_path, device=0 if torch.cuda.is_available() else -1)
|
| 21 |
speech = synthesiser(text)
|
| 22 |
-
|
| 23 |
# Resample to 48kHz if needed
|
| 24 |
if speech["sampling_rate"] != 48000:
|
| 25 |
resampled_audio = scipy.signal.resample(speech["audio"][0], int(len(speech["audio"][0]) * 48000 / speech["sampling_rate"]))
|
|
@@ -27,7 +22,7 @@ def generate_speech(text, model_path):
|
|
| 27 |
else:
|
| 28 |
resampled_audio = speech["audio"][0]
|
| 29 |
sampling_rate = speech["sampling_rate"]
|
| 30 |
-
|
| 31 |
return sampling_rate, resampled_audio
|
| 32 |
|
| 33 |
def save_audio(sampling_rate, audio_data, filename="output.wav"):
|
|
@@ -40,7 +35,7 @@ def voice_cloning(base_speaker, reference_speaker, model_version, device_choice,
|
|
| 40 |
ckpt_converter = f'./OPENVOICE_MODELS/{model_version}'
|
| 41 |
device = "cuda:0" if device_choice == "GPU" and torch.cuda.is_available() else "cpu"
|
| 42 |
print(f"Device: {device}")
|
| 43 |
-
|
| 44 |
# Load the ToneColorConverter
|
| 45 |
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
|
| 46 |
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
|
|
@@ -48,10 +43,10 @@ def voice_cloning(base_speaker, reference_speaker, model_version, device_choice,
|
|
| 48 |
# Extract speaker embeddings
|
| 49 |
source_se, _ = se_extractor.get_se(base_speaker, tone_color_converter, vad=vad_select)
|
| 50 |
target_se, _ = se_extractor.get_se(reference_speaker, tone_color_converter, vad=vad_select)
|
| 51 |
-
|
| 52 |
# Define output file paths
|
| 53 |
save_path = f'{output_dir}/output_cloned.wav'
|
| 54 |
-
|
| 55 |
# Perform tone color conversion
|
| 56 |
tone_color_converter.convert(
|
| 57 |
audio_src_path=base_speaker,
|
|
@@ -63,11 +58,10 @@ def voice_cloning(base_speaker, reference_speaker, model_version, device_choice,
|
|
| 63 |
except Exception as e:
|
| 64 |
return None, f"Error: {str(e)}"
|
| 65 |
|
| 66 |
-
def ui_fn(text,
|
| 67 |
-
|
| 68 |
-
sampling_rate, audio_data = generate_speech(text, model_path)
|
| 69 |
audio_file = save_audio(sampling_rate, audio_data)
|
| 70 |
-
|
| 71 |
if clone:
|
| 72 |
cloned_audio_file, status = voice_cloning(audio_file, reference_speaker, model_version, device_choice, vad_select)
|
| 73 |
return cloned_audio_file, status
|
|
@@ -75,15 +69,11 @@ def ui_fn(text, model_dir, model_name, clone, reference_speaker, model_version,
|
|
| 75 |
return audio_file, "Speech generation successful!"
|
| 76 |
|
| 77 |
if __name__ == "__main__":
|
| 78 |
-
#model_dir = "./models_mms"
|
| 79 |
-
#model_names = get_model_names(model_dir)
|
| 80 |
-
|
| 81 |
iface = gr.Interface(
|
| 82 |
fn=ui_fn,
|
| 83 |
inputs=[
|
| 84 |
gr.Textbox(label="Text to Synthesize"),
|
| 85 |
-
gr.Textbox(label="Model
|
| 86 |
-
#gr.Dropdown(model_names, label="Model"),
|
| 87 |
gr.Checkbox(label="Clone Voice", value=False),
|
| 88 |
gr.Audio(label="Reference Speaker (Target Voice)", type="filepath"),
|
| 89 |
gr.Dropdown(["v1", "v2"], value="v2", label="Model Version"),
|
|
@@ -95,6 +85,6 @@ if __name__ == "__main__":
|
|
| 95 |
gr.Textbox(label="Status", interactive=False)
|
| 96 |
],
|
| 97 |
title="Text-to-Speech Synthesizer with Voice Cloning",
|
| 98 |
-
description="Enter text and model
|
| 99 |
)
|
| 100 |
iface.launch()
|
|
|
|
| 11 |
output_dir = './openvoice_outputs'
|
| 12 |
os.makedirs(output_dir, exist_ok=True)
|
| 13 |
|
| 14 |
+
def generate_speech(text, model_id):
|
| 15 |
+
synthesiser = pipeline("text-to-speech", model=model_id, device=0 if torch.cuda.is_available() else -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
speech = synthesiser(text)
|
| 17 |
+
|
| 18 |
# Resample to 48kHz if needed
|
| 19 |
if speech["sampling_rate"] != 48000:
|
| 20 |
resampled_audio = scipy.signal.resample(speech["audio"][0], int(len(speech["audio"][0]) * 48000 / speech["sampling_rate"]))
|
|
|
|
| 22 |
else:
|
| 23 |
resampled_audio = speech["audio"][0]
|
| 24 |
sampling_rate = speech["sampling_rate"]
|
| 25 |
+
|
| 26 |
return sampling_rate, resampled_audio
|
| 27 |
|
| 28 |
def save_audio(sampling_rate, audio_data, filename="output.wav"):
|
|
|
|
| 35 |
ckpt_converter = f'./OPENVOICE_MODELS/{model_version}'
|
| 36 |
device = "cuda:0" if device_choice == "GPU" and torch.cuda.is_available() else "cpu"
|
| 37 |
print(f"Device: {device}")
|
| 38 |
+
|
| 39 |
# Load the ToneColorConverter
|
| 40 |
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
|
| 41 |
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
|
|
|
|
| 43 |
# Extract speaker embeddings
|
| 44 |
source_se, _ = se_extractor.get_se(base_speaker, tone_color_converter, vad=vad_select)
|
| 45 |
target_se, _ = se_extractor.get_se(reference_speaker, tone_color_converter, vad=vad_select)
|
| 46 |
+
|
| 47 |
# Define output file paths
|
| 48 |
save_path = f'{output_dir}/output_cloned.wav'
|
| 49 |
+
|
| 50 |
# Perform tone color conversion
|
| 51 |
tone_color_converter.convert(
|
| 52 |
audio_src_path=base_speaker,
|
|
|
|
| 58 |
except Exception as e:
|
| 59 |
return None, f"Error: {str(e)}"
|
| 60 |
|
| 61 |
+
def ui_fn(text, model_id, clone, reference_speaker, model_version, device_choice, vad_select):
|
| 62 |
+
sampling_rate, audio_data = generate_speech(text, model_id)
|
|
|
|
| 63 |
audio_file = save_audio(sampling_rate, audio_data)
|
| 64 |
+
|
| 65 |
if clone:
|
| 66 |
cloned_audio_file, status = voice_cloning(audio_file, reference_speaker, model_version, device_choice, vad_select)
|
| 67 |
return cloned_audio_file, status
|
|
|
|
| 69 |
return audio_file, "Speech generation successful!"
|
| 70 |
|
| 71 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
| 72 |
iface = gr.Interface(
|
| 73 |
fn=ui_fn,
|
| 74 |
inputs=[
|
| 75 |
gr.Textbox(label="Text to Synthesize"),
|
| 76 |
+
gr.Textbox(label="Model ID", value="VIZINTZOR/MMS-TTS-THAI-MALE-NARRATOR"),
|
|
|
|
| 77 |
gr.Checkbox(label="Clone Voice", value=False),
|
| 78 |
gr.Audio(label="Reference Speaker (Target Voice)", type="filepath"),
|
| 79 |
gr.Dropdown(["v1", "v2"], value="v2", label="Model Version"),
|
|
|
|
| 85 |
gr.Textbox(label="Status", interactive=False)
|
| 86 |
],
|
| 87 |
title="Text-to-Speech Synthesizer with Voice Cloning",
|
| 88 |
+
description="Enter text and model ID to generate speech. Optionally, clone the voice using a reference speaker."
|
| 89 |
)
|
| 90 |
iface.launch()
|